Митчелл, который был ректором университета Торнхилл в английском городе Йоркшир, доложил о своем предсказании существования темных звезд на заседании Лондонского Королевского общества 27 ноября 1783 г. Этот доклад определенно стал сенсацией среди британских ученых. Через тринадцать лет французский философ Пьер Симон Лаплас опубликовал аналогичное предсказание в первом издании своей знаменитой работы
Только после того как Эйнштейн сформулировал свои релятивистские законы гравитации в ноябре 1915 г., у физиков вновь появилась уверенность в том, что они понимают природу и света, и тяготения настолько хорошо, что могут рассчитать, как притяжение звезды влияет на излучаемый ею свет. Теперь они снова могли вернуться к рассмотрению темных звезд (черных дыр) Митчелла и Лапласа.
Первый шаг сделал Карл Шварцшильд, один из самых выдающихся астрофизиков начала XX столетия. Шварцшильд служил в немецкой армии и воевал на русском фронте (шла Первая мировая война), когда прочитал в Известиях Прусской академии наук доклад Эйнштейна, посвященный общей теории относительности. Сразу после этого он задался вопросом: какие предсказания, касающиеся звезд, следуют из новых законов гравитации?
Поскольку анализ несферических или вращающихся звезд был математически слишком сложен, Шварцшильд решил ограничиться вначале невращающимися звездами, имеющими форму идеального шара, и получить решение для пространства вокруг звезды, оставив рассмотрение ее внутренней области на потом. Ему потребовалось всего несколько дней для того, чтобы, используя уравнение поля Эйнштейна, получить абсолютно точное решение для кривизны пространства-времени снаружи
Шварцшильд послал Эйнштейну свою статью, содержащую эти расчеты, и Эйнштейн представил ее на собрании Прусской академии наук в Берлине 13 января 1916 г., а через несколько недель представил и вторую его статью, в которой было получено точное решение для кривизны пространства-времени
Шварцшильдовская геометрия — это первый конкретный пример искривленного пространства-времени, с которым мы встречаемся в этой книге. По этой причине, а также потому, что именно с ее помощью можно определить свойства черных дыр, мы рассмотрим ее подробно.
Карл Шварцшильд в своей мантии в Геттингене (Германия). [Предоставлено Визуальным архивом Эмилио Сегре Американского института физики]
Если бы мы в своей повседневной жизни представляли себе пространство и время как единый, абсолютный, четырехмерный континуум, было бы вполне логично описывать шварцшильдовскую геометрию на языке искривленного четырехмерного пространства-времени. Однако мы привыкли иметь дело по отдельности с трехмерным пространством и одномерным временем. Поэтому я предлагаю вам описание, в котором искривленное пространство-время будет разделено на искривленное пространство и искривленное время.
Поскольку пространство и время относительны (если мы движемся относительно друг друга, то мои пространство и время будут отличаться от ваших[59]
), для такого разделения требуется определить систему отсчета. Для звезды будет естественно выбрать такую систему отсчета, в которой эта звезда покоится; назовем ее собственной системой отсчета этой звезды. Другими словами, разумнее вначале рассмотреть собственные пространство и время этой звезды.В качестве способа визуализации искривления пространства звезды я буду использовать рисунок, называемый