Представим себе ряд наблюдателей, расположенных вдоль линии, продолжающей радиус черной дыры, и неподвижных по отношению к ней. Например, они могут находиться на ракетах, двигатели которых работают, не давая наблюдателям падать на черную дыру. Далее, представим себе еще одного наблюдателя на ракете с выключенным двигателем, который свободно падает к черной дыре. По мере падения он проносится мимо неподвижных наблюдателей со всевозрастающей скоростью. При падении к черной дыре с большого расстояния эта скорость равняется второй космической скорости. Скорость падения стремится к световой, когда падающее тело приближается к гравитационному радиусу. Ясно, что темп течения времени на свободно падающей ракете с ростом скорости уменьшается. Это уменьшение настолько значительное, что с точки зрения наблюдателя с любой неподвижной ракеты для того, чтобы падающий успел достичь сферы Шварцшильда, проходит бесконечный промежуток времени, а по часам падающего наблюдателя это время соответствует конечному промежутку. Таким образом, бесконечное время одного наблюдателя на неподвижной ракете равно конечному промежутку времени другого (на падающей ракете), причем промежутку очень малому, — так, мы видели, для массы Солнца это всего стотысячная доля секунды. Что может быть более наглядным примером относительности временной протяженности?
Итак, по часам, расположенным на сжимающейся звезде, она за конечное время сжимается до размеров гравитационного радиуса и будет продолжать сжиматься дальше, к еще меньшим размерам. Но далекий внешний наблюдатель этих последних этапов эволюции, как мы помним, никогда не увидит. А что будет видеть наблюдатель на сжимающейся звезде после своего ухода под сферу Шварцшильда? Что будет со звездой?
Отложим на некоторое время эти вопросы, а сейчас вернемся к внешнему полю черной дыры и посмотрим, как в этом сверхсильном поле движутся тела и распространяются лучи света.
Согласно ньютоновской теории тяготения любое тело в гравитационном поле звезды движется либо по разомкнутым кривым — гиперболе или параболе, — либо по замкнутой кривой — эллипсу (в зависимости от того, велика или мала начальная скорость движения). У черной дыры на больших от нее расстояниях поле тяготения слабо, и здесь все явления с большой точностью описываются теорией Ньютона, то есть законы ньютоновской небесной механики здесь справедливы. Однако с приближением к черной дыре они нарушаются все больше и больше.
Познакомимся с некоторыми важнейшими особенностями движения тел в поле тяготения черной дыры.
По теории Ньютона, если скорость тела меньше второй космической, то оно движется по эллипсу около центрального тела — тяготеющего центра (ТЦ). У эллипса есть ближайшая к ТЦ точка (периастр) и наиболее удаленная (апоастр). По теории Эйнштейна, в случае движения тела со скоростью, меньшей второй космической, траектория его также имеет периастр и апоастр, но она уже не эллипс; оно движется по незамкнутой орбите, то приближаясь к черной дыре, то снова удаляясь от нее. Траектория вся целиком лежит в одной плоскости, но вблизи черной дыры она может выглядеть весьма причудливо, как, например, показано на рисунке 1
. Если же она лежит достаточно далеко, то вид ее представляет собой медленно поворачивающийся в пространстве эллипс. Такой медленный поворот эллиптической орбиты Меркурия на 43 угловых секунды в столетие послужил первым подтверждением правильности теории тяготения Эйнштейна.Очень интересно рассмотреть простейшее периодическое движение тела в поле черной дыры по круговой орбите. По теории Ньютона, движение по кругу возможно на любом расстоянии от ТЦ. Из теории Эйнштейна следует, что это не так. Чем ближе к ТЦ, тем больше скорость движущегося по окружности тела. На окружности, удаленной на полтора гравитационных радиуса, скорость обращающегося тела достигает световой. На еще более близкой к черной дыре окружности движение его вообще невозможно, ибо для этого ему потребовалась бы скорость больше скорости света.
Но, оказывается, в реальной ситуации движение по окружности вокруг черной дыры невозможно и на больших расстояниях, начиная с трех гравитационных радиусов, когда скорость движения составляет всего половину скорости света. В чем же причина?
Дело в том, что на расстояниях меньше трех гравитационных радиусов движение по окружности неустойчиво. Малейшее возмущение, сколько угодно малый толчок заставят вращающееся тело уйти с орбиты и либо упасть в черную дыру, либо улететь в пространство (ничего похожего не предусматривает ньютоновская «Небесная механика»). Но, пожалуй, самое интересное и необычное в новой небесной механике — это возможность гравитационного захвата черной дырой тел, прилетающих из космоса.