Читаем Чёрный лебедь. Под знаком непредсказуемости полностью

Хочу особо отметить, что вообще-то (если оставить в стороне издержки в виде психологии лавочников) я искренне верю в ценность срединности и посредственности — какой гуманист не мечтает уменьшить неравенство между людьми? Нет ничего более отталкивающего, чем безрассудно сотворенный идеал сверхчеловека! На самом деле меня тревожит иная проблема — эпистемологическая, то есть проблема познания. Пора уяснить, что реальность — не Среднестан и нам надо научиться с этим жить.

«Греки бы его обожествили»

Список людей, у которых в мозгу угнездилась (благодаря своей платонической чистоте) гауссиана, невероятно велик.

Сэр Фрэнсис Гальтон, двоюродный брат Чарльза Дарвина и внук Эразма Дарвина, был наряду со своим кузеном одним из последних независимых ученых-джентльменов, к каковым также принадлежали лорд Кавендиш, лорд Кельвин, Людвиг Витгенштейн (на свой лад) и отчасти наш суперфилософ Бертран Рассел. Хотя Джон Мэйнард Кейнс не вполне вписывался в эту категорию, он мыслил в унисон с ней. Гальтон жил в викторианскую эпоху, когда обладатели наследственного состояния и неограниченного досуга не только упражнялись в верховой езде и стрельбе по дичи, но становились философами, учеными или (менее одаренные) политиками. Как это ни печально, вместе с той эпохой ушло нечто невосполнимое: истинные подвижники, занимающиеся наукой ради науки, не думающие о карьере.

К сожалению, занятия наукой из бескорыстной любви к знанию не гарантируют, что ты будешь двигаться в правильном направлении. Познакомившись с «нормальным» распределением, Гальтон влюбился в него. Говорят, он однажды воскликнул, что, если бы грекам было о нем известно, они бы обожествили его. Возможно, восторг Гальтона тоже поспособствовал воцарению гауссианы в научных умах.

Гальтон не сподобился обзавестись надлежащим математическим багажом, но был прямо-таки одержим измерениями. Он не знал о законе больших чисел, но сам открыл его, проанализировав собранные данные. Он сконструировал доску Гальтона, или «quincunx»[75], — что-то вроде автомата для игры в пинбол, с помощью которого можно смоделировать колоколовидную кривую, — об этом я расскажу через несколько абзацев. Правда, Гальтон применял кривую нормального распределения в таких областях, как генетика и наследственность, где ее использование оправданно. Но его энтузиазм помог внедрить зарождавшиеся статистические методы в социальные сферы.

Ответьте, пожалуйста, «да» или «нет»

А сейчас позвольте мне поговорить о размерах ущерба.

Если вам нужны качественные (а не количественные) выводы, как в психологии или медицине, где вы вполне обойдетесь «безразмерными» ответами «да» или «нет», то можете спокойно допустить, что находитесь в Среднестане. Влияние невероятного не будет слишком большим. У него есть рак либо нет; она беременна либо нет и так далее. Смертельность или беременность не имеют степеней (если не рассматривать их в эпидемических масштабах). Но, когда вы манипулируете совокупностями, различными по величине (такими как доход, ваш капитал, прибыль с портфеля ценных бумаг или продажи книг), гауссиана может вас здорово подвести, так как эта сфера не в ее компетенции. Одно-единственное число способно порушить все ваши средние показатели; одна-единственная потеря — зачеркнуть сотни и сотни прибылей. Уже нельзя говорить: «Это исключение». Заявление «да, я могу потерять деньги» довольно бессмысленно, если не указать хотя бы приблизительную сумму. Потерять весь свой капитал или потерять долю своего дневного дохода — все-таки разница.

Именно поэтому эмпирическая психология и открытые ею свойства человеческой природы, о которых я говорил в начале этой книги, не страдают от ложного использования гауссианы; психологам вообще повезло, ибо переменные, которыми они оперируют, в большинстве своем не выходят за рамки обычной гауссовой статистики. Выясняя, сколько человек в выборке имеют определенную особенность или склонность к ошибке, они обычно добиваются результата посредством ответов «да» или «нет». Ни одно отдельно взятое наблюдение не может в корне изменить общего заключения.

Теперь я представлю вам идею гауссианы, разобрав ее по кирпичикам.

Мысленный (численный) эксперимент, демонстрирующий, откуда происходит кривая нормального распределения

Рассмотрим своего рода пинбольный автомат, такой, как на рисунке 8. Запустим 32 шара, предполагая, что доска правильно сбалансирована, так что у шара одинаковые шансы свалиться направо и налево на любом пересечении, наткнувшись на штырь. Ожидаемый результат — большая часть шаров «приземлится» в центральных ячейках: чем ячейки дальше от центра, тем меньше туда попадет шаров.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже