И чем мудреней механика, тем труднее предсказывать такие «взрывы». Наш мир, к сожалению, намного сложнее, чем задача трех тел: в нем не три объекта, а гораздо больше. Тут мы имеем дело с тем, что нынче называется динамической системой, а мир, как мы видим, — система весьма динамическая.
Вообразите, что будущее — это ствол с ветвями, каждая из которых образует развилки с множеством ответвлений. Чтобы представить, как пасует наша интуиция перед этими множащимися нелинейными эффектами, вспомните знаменитую притчу о шахматной доске. Изобретатель шахмат попросил следующую награду: одно зернышко риса на первую клетку, два на вторую, четыре на третью, потом восемь, шестнадцать и так далее, каждый раз (всего шестьдесят четыре раза) удваивая количество. Правитель сразу согласился исполнить столь ничтожную просьбу, но вскоре понял, что его перехитрили. Обещанное количество риса превысило бы все мыслимые запасы!
Эта мультипликативная сложность, требующая для прогнозирования все большей и большей точности исходных данных, может быть проиллюстрирована следующим простым упражнением: предсказанием передвижения бильярдного шара по столу. (Я использую в этом примере расчеты, выполненные математиком Майклом Берри.) Если вы знаете все основные параметры покоящегося шара, можете рассчитать сопротивление поверхности стола (это элементарно) и силу удара, то довольно просто определите, что случится при первом столкновении. Предсказать последствия второго удара будет труднее, но тоже возможно: придется лишь уточнить уже измеренные параметры. Но чем дальше, тем хуже: для корректного расчета девятого удара нужно учесть гравитационное воздействие тела, находящегося возле стола (по скромным прикидкам Берри, в этом теле менее 70 килограммов). А для расчета пятьдесят шестого удара в ваших вычислениях должны будут присутствовать все элементарные частицы Вселенной. Электрон на краю Вселенной, отделенный от нас 10 миллиардами световых лет, может оказать значимый эффект на результат. Помните о дополнительной трудности: нужно также принять во внимание все прогнозы относительно местоположения этих переменных в будущем. Чтобы предсказать движение бильярдного шара по столу, нужно знать динамику всей Вселенной, каждого атома! Мы можем легко предсказать траектории крупных объектов, скажем, планет (хотя на довольно малом отрезке времени), но для объектов поменьше их уже так просто не рассчитаешь — а этих объектов неизмеримо больше, чем крупных.
Заметьте, что в примере с бильярдными шарами мы имели в виду некий абстрактный мир, простой и понятный, без социальных безумств, которые творятся иногда совершенно произвольно. У бильярдных шаров нет разума. В примере также не учитываются квантовый эффект и эффект относительности. Мы не использовали и понятие (к которому часто обращаются шарлатаны) «принцип неопределенности». Нас не волнует, что на субатомном уровне точность измерений крайне ограниченна. Мы занимаемся исключительно самими бильярдными шарами!
При наличии динамической системы, где помимо одного-единственного шара имеются и другие объекты, где траектории до некоторой степени зависят друг от друга, возможность предсказывать будущее не просто уменьшается — она становится предельно ограниченной. Пуанкаре предложил работать только с качественными, а не с количественными величинами: обсуждать некоторые свойства систем, но не просчитывать их. Можно точно мыслить, но нельзя использовать числа. Пуанкаре даже придумал для этого специальный метод — анализ in situ[51]
, воспринятый топологией. Предсказание и прогнозирование — дело куда более сложное, чем обычно считают, но, чтобы понять это, нужно знать математику. А чтобы принять это, нужно и понимание и мужество.В 1960-х метеоролог Эдвард Лоренц из Массачусетского технологического института самостоятельно повторил открытие Пуанкаре — опять же случайно. Он работал над компьютерной программой погоды, моделируя ее динамику на несколько дней вперед. Как-то он попытался воспроизвести ту же модель, введя те же, как ему казалось, исходные параметры, но получил совершенно иные результаты. Сначала он решил, что дело в компьютерном сбое или ошибке вычисления. Первые компьютеры были чудовищно громоздкими, работали медленно, не то что нынешние, поэтому их пользователи всегда искали способ их «поторопить». Лоренц быстро сообразил, что столь значительные расхождения в результатах произошли из-за того, что ради упрощения задачи он несколько округлил исходные параметры. Это явление было названо «эффектом бабочки»: взмах крыльев индийской бабочки может два года спустя вызвать ураган в Нью-Йорке. Открытие Лоренца пробудило интерес к «теории хаоса».
Разумеется, исследователи обнаружили, что открытие Лоренца было предвосхищено трудами не только Пуанкаре, но и прозорливого интуитивиста Жака Адамара, который размышлял о тех же проблемах примерно в 1898 году, а потом прожил еще почти семь десятилетий и умер в возрасте 98 лет[52]
.Хайека по-прежнему игнорируют