Читаем Четвертое измерение. Является ли наш мир тенью другой Вселенной? полностью

Стена кухни представляет собой координатную плоскость, дверной косяк является осью роста, а плинтус — осью веса. Четыре точки соответствуют четырем парам чисел — росту и весу каждого члена семьи.

* * *

МУХА ДЕКАРТА

Французский математик Рене Декарт (1596–1650) ввел понятие координатной плоскости, а также аналитической геометрии в своей работе «Геометрия», опубликованной в качестве приложения к книге «Рассуждение о методе». По одной из легенд, идея декартовой плоскости пришла к нему в голову, когда он думал о движении мухи по потолку спальни. Декарт понял, что положение мухи может быть задано расстояниями от двух стен. Таким образом, Декарт добавил координаты — алгебраический инструмент — к плоскости Евклида, которая, в свою очередь, находится в некотором геометрическом пространстве. Хотя в наше время координаты могут показаться простым понятием, в то время это было очень трудно воспринять даже Исааку Ньютону (1643–1727), который испытывал сложности при чтении работ Декарта.



Координатная плоскость с точками А = (4, 2), В = (-5, 3), С = (-2, -4) и D = (5, -3).

* * *

Трехмерное координатное пространство задается тройками чисел (х1, х2, х3). Как уже говорилось, положение вертолета определяется тремя числами — широтой, долготой и высотой. Аналогично более абстрактным примером будет пространство, содержащее картонные коробки, определенные их длиной, шириной и высотой.



Коробка, изображенная в трехмерном координатном пространстве. Координаты точки (аЬ, с) определяют размеры коробки длиной а, шириной и высотой с.


В общем случае координаты точки в n-мерном пространстве задаются кортежем (набором) из n чисел (х1…,xn), где n — размерность пространства. Таким образом, каждая точка пространства является кортежем (х1…,xn), а n-мерное координатное пространство состоит из всевозможных кортежей. В математических символах это записывается так:


Во многих отраслях науки и техники различные данные представляют собой наборы числовых значений, поэтому, применяя понятие координатного пространства к этим кортежам чисел, мы можем использовать геометрические инструменты для организации, локализации и обработки информации. Таким образом мы получаем возможность делать полезные заключения. Можно привести разнообразные примеры, такие как результаты медицинских анализов крови (количество в крови натрия, калия, глюкозы, холестерина и других соединений). Эти результаты представляют собой кортеж из n чисел, где n обозначает количество проведенных клинических испытаний. Другими примерами могут выступать списки групп студентов, результаты спортивных соревнований и так далее.

* * *

ОБЫЧНОЕ РАССТОЯНИЕ

Понятие координатного пространства предполагает существование фиксированного расстояния между двумя точками в этом пространстве, так называемого обычного расстояния. Например, для двух точек р (x1, х2, х3) и = (y1, у2, у3) в трехмерном координатном пространстве R3 обычное расстояние задается выражением

что делает наш мир трехмерным евклидовым пространством. Именно это расстояние мы используем в нашей повседневной жизни. Конечно, это понятие расстояния легко обобщается на n-мерное координатное пространство.



Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже