Читаем Число и культура полностью

В каждом из отношений задействован один или несколько элементов, т.е. элементов в системе не меньше, чем отношений: M ≥ k (M больше или равно k). Каждый элемент, не являясь изолированным, в свою очередь, участвует в одном или в нескольких отношениях, т.е. отношений не меньше, чем элементов: M ≤ k (M меньше или равно k). Объединив два условия, получим:


M = k

( 1 )

В дискретных целостных системах число элементов равно числу отношений.

Элементы системы связаны между собой (физически, логически, в любом интересующем плане) попарно, тройками, группами по четыре и т.д. При изучении реальных систем часто сосредоточивают внимание лишь на определенном классе отношений элементов между собой. Скажем, выбирая в качестве базовых попарные (бинарные) отношения, все остальные (взаимодействия одновременно по три, по четыре и т.д.) считают логически производными от бинарных. Так поступают, например, в классической физике, ставя во главу угла взаимодействие пар материальных точек, а к более сложным случаям переходят с помощью обыкновенного наложения, суперпозиции. Дело, конечно, не в физике как таковой, – аналогичные предположения используются в самых разных областях, где так или иначе задействован рассудок. По сходному пути пойдем и мы, выбирая в качестве конституирующей лишь одну из разновидностей отношений, однако уже не обязательно бинарных.

Обозначим через n кратность отношений, заданных таким образом в системе, т.е. количество элементов, участвующих в каждом отдельном отношении, или взаимодействии. Если отношения бинарны, то n = 2 ; если тринитарны, то n = 3 и т.д. Сказанное – достаточно сильное логическое ограничение на систему, но, как вскоре предстоит убедиться, ее прецеденты встречаются чуть не на каждом шагу. Что, собственно, имеется в виду?

Во-первых, мы отвлекаемся от того, что, например, один элемент может вступать в многообразные отношения с другим, и в момент анализа берем только одно отношение: либо "генерализируя", "редуцируя" разнообразие и сводя его к одному "интегральному" сорту, либо рассматривая систему в некоем одном, специальном аспекте и под таким углом зрения априорно интересуясь только одним сортом. Подобные рамки суть заведомое упрощение многих реальных систем, но ведь сложное обычно познается посредством простого. Во-вторых, мы унифицировали отношения в смысле их кратности: например, если какая-то подгруппа элементов взаимодействует попарно, точно так же обязаны взаимодействовать и другие подгруппы. Если речь идет о тринитарном взаимодействии, таково оно для всех секторов. Подобная унификация есть не что иное, как требование логической однородности рассматриваемой системы: все ее части подчиняются одному и тому же принципу. Если бы было иначе, мы бы не знали, какой стратегии исследования придерживаться, и нам пришлось бы по-отдельности изучать, что происходит при одной кратности отношений (в одной подгруппе), а что при другой, т.е. мы все равно методологически вернулись бы к исходным простейшим случаям. Генерализация, редукция, выделение специального аспекта, унификация, достижение логической однородности – все это разные пути к выполнению одного и того же условия, выше названного простотой. Благодаря последней мы и можем определить кратность отношений n и считать ее одинаковой в рамках всей системы. Отныне у нас есть основание именовать такие совокупности не только целостными (полными, замкнутыми, связными), но и простыми.

В результате, чтобы определить количество отношений k, нужно пересчитать все возможные группы, состоящие из n элементов. Это одна из стандартных для элементарной математики процедур, и для сверки читатель может заглянуть в начало любого краткого курса комбинаторики, например, в [235]:


k = CMn,

( 2 )

где СМn – число сочетаний из M элементов по n.

Подставив формулу (2) в условие (1), получим:


M = СMn.

( 3 )

Ни один из курсов комбинаторики не обходится и без выражения для числа сочетаний [там же, с. 517]:


Сmn = M! / (M – n )! n!,

( 4 )

где знак факториала ( ! ) означает перемножение всех чисел от единицы до стоящего перед факториалом значения (например, M! = 1·2·3·…·M ).

Объединив условие (3) с формулой (4), получим уравнение:


M = M! / (M – n )! n!,

( 5 )

в котором величина n выступает в качестве параметра.

Решать данное уравнение предстоит уже в следующих разделах, а другой, для кого-то, возможно, более убедительный, вывод вынесен в Приложение 1.


Примечания


1 Поскольку составляемой модели предстоит работать с весьма элементарным, генетически древним (см. Предисловие) срезом культуры, постольку уместна ссылка на Аристотеля, на его мнение, что целое предшествует частям, см. [25, с. 379]. Или проще: представим себе ситуацию, когда мы собираемся составить некий заведомо полный список, но еще не знаем ни из каких единиц он будет состоять, ни сколько таких единиц потребуется.


1.3. Тройственные структуры


Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука