Читаем Число и культура полностью

Как бы там ни было, человек узнал о существовании двух классов чисел: рациональных и иррациональных. В их отношении между собой выступает операция сравнения, но уже не по величине, как раньше (больше-меньше), а по признаку соизмеримости, т.е. наличия или отсутствия общей меры. Всякий раз таким образом сопоставляется пара чисел, пара классов, т.е. данное отношение – бинарно, n = 2. На этом история не закончилась.

Развитие математики и механики выявило особую роль такого часто встречающегося числа как π, затем открыли другое замечательное число, получившее обозначение e (одна из важнейших постоянных математического анализа).(14) В конце ХVIII в. И.Ламберт и А.Лежандр доказали, что число π не может быть рациональным, а во второй половине ХIХ в. выяснилось, что π и e не только иррациональные, но и трансцендентные. Существование класса трансцендентных чисел как таковых впервые установил французский математик Ж.Лиувилль в 1844 г., теорему о трансцендентности числа π доказал Ф.Линдеман в 1882 г., аналогичную теорему о числе e – Ш.Эрмит в 1873 г.

Вообще в данный период – в канун и вместе с европейскими революциями 1848 г. – в математике происходит много ярких событий, так или иначе имеющих отношение к теме книги, что, возможно, не удивительно: начиналась подлинная революция в математике, предварившая великие потрясения и открытия конца ХIХ – начала ХХ вв. в физике, философии, искусстве, политике и др. Но об этом речь впереди, а в настоящем контексте упомянем немецкого ученого Р.Дедекинда, обосновавшего теорию действительных чисел и предложившего строгий аксиоматический метод введения чисел иррациональных (так называемые дедекиндовы сечения). Однако сейчас нас интересуют числа трансцендентные.

Что они собой представляют? По определению – это те, которые не могут быть корнем никакого многочлена с целыми коэффициентами, т.е. числа неалгебраические, что навряд ли много скажет нематематику. Противопоставление классов алгебраических и неалгебраических (трансцендентных) чисел, тем не менее, исключительно важно, поскольку с алгеброй принято связывать саму нашу логику. Впоследствии такие логики и были формализованы в алгебраическом виде (математическая логика). В таком случае, быть числом неалгебраическим как бы означает "быть нелогичным", что, собственно, и запечатлелось в названии: трансцендентные (снова, и еще более сильный, оксюморон: казалось бы, что "потустороннего" может быть в длине окружности? Но математики знают, о чем говорят).

Пропасть между алгебраическими и трансцендентными числами подчеркивается теорией множеств, ставшей еще одним достижением ХIХ в., особенно второй половины – Б.Больцано, Г.Кантор, Р.Дедекинд. Хотя алгебраических чисел – рациональных и иррациональных – существует бесконечное количество, но их множество, как выражаются, счетно. Это означает, что все такие числа – не на практике, конечно, а в принципе – можно пронумеровать, т.е. их "столько же", сколько чисел в натуральном ряду. Чисел же трансцендентных неизмеримо, качественно "больше". Их множество несчетно и, как говорят в таких случаях, имеет мощность континуума (т.е. трансцендентных чисел "столько же", сколько точек на непрерывной прямой). Возможность что-то пронумеровать – верный признак логичности, о чем же тогда свидетельствует отсутствие подобной возможности?

В прежней среде действительных чисел, но по-новому, была по сути развернута интеллектуальная драма, сходная с той, что некогда произошла при первой исторической встрече с иррациональными числами. К счастью, во второй раз математики оказались более подготовленными в морально-психологическом плане. Посмотрим, что у нас осталось в итоге.

Числа действительные (иначе их называют вещественными) делятся, во-первых, на рациональные и иррациональные, во-вторых, – на алгебраические и трансцендентные. В обоих случаях речь идет о характерной оппозиции: за числами одного сорта признается качество своеобразной "логичности", за числами другого сорта – нет. Сравнение в обоих контрастных противопоставлениях производится попарно, т.е. кратность отношений двойная, n = 2. Если свести вместе обе классификации, построенные над полем действительных чисел, то получится, что последнее состоит из чисел рациональных (целых и дробных), алгебраических иррациональных (наподобие √2) и трансцендентных. Их разделение фиксирует скачкообразное убывание специфической "логичности" (мы уже знаем, в каком смысле). Изобразим классификацию на рисунке:



Рис. 1-3


Почему в итоге получилось три непересекающихся класса действительных чисел, т.е. почему М = 3? – Во-первых, в системе задано бинарное отношение сравнения ( n = 2 ); во-вторых, совокупность названных классов мыслится в качестве законченной и целостной. Откуда нам известно последнее? – От самих математиков, ибо они доказали так называемую теорему о полноте, утверждающую, что других классов действительных чисел не существует, сюрпризы с появлением новых не повторятся.

Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука