Фактически существует весьма простой математический метод, с помощью которого можно получать лишенные периодичности последовательности цифр после запятой. Например, извлечение квадратного корня. Рассмотрим для примера число 10. Будем искать число, которое при возведении в квадрат дало бы в результате 10, но мы его не найдем. 3² = 3 × 3 = 9, то есть тройка — слишком малое число, а 4² = 4 × 4 = 16, то есть четверка — слишком большое. Перспективными представляются два десятичных числа с одним знаком после запятой — 3,1 и 3,2, ибо 3,1² = 3,1 × 3,1 = 9,61, а 3,2² = 3,2 × 3,2 = 10,24. Но в первом случае мы снова получаем небольшой недостаток, а во втором — небольшой избыток. Попробуем поступить по-другому. Можно представить, что калькулятор выдаст значение такого числа, если мы зададим действие: извлечь квадратный корень из числа 10. Восьмиразрядный калькулятор выдаст на дисплее следующий результат: 3,1622777. Но, оказывается, и это не окончательный результат. Если взять для вычислений мощный компьютер, то в результате извлечения квадратного корня из числа 10 мы получим следующее:
Эта последовательность цифр после запятой производит впечатление полнейшего хаоса.
Годится ли эта последовательность для использования в кодировании по методу одноразового блокнота? Едва ли можно советовать этот метод для шифрования, ибо дешифровщики тоже знают, как извлекать квадратные корни. Они ставят себя на место людей, зашифровавших перехваченное донесение, и задают себе вопрос: к какому методу прибегнул противник для получения случайной цифровой последовательности? В простейшем случае это извлечение квадратного корня из числа, не являющегося точным квадратом. Дешифровщики испытают несколько чисел и очень скоро расколют шифровку.
Собственно говоря, ту последовательность цифр, которую мы использовали в нашем примере с шифровкой Смайли,
тоже нельзя использовать для кодирования донесения, и не потому, что цифры не расположены абсолютно хаотично — как раз эта последовательность является совершенно хаотичной. Дело, однако, в том, что эта последовательность очень хорошо знакома всем любителям чисел. Речь идет о первых цифрах после запятой всем известного числа π.
Архимед — впрочем, кто еще мог это сделать, как не величайший математик всех времен и народов? — был первым, кому удалось изобрести способ со сколь угодной точностью рассчитывать соотношение длины окружности и ее диаметра. Сам Архимед не называл это соотношение π. Это обозначение ввел в математику много веков спустя валлийский математик Уильям Джонс, произведя его от греческого слова περιφέρεια — периферия, кайма, край. Ввиду чрезвычайной трудоемкости расчетов Архимед удовольствовался тем, что поместил результат между значениями 3 + 10/71 (что соответствует современной записи 3,1408…) и 3 + 1/7 (что соответствует современной записи 3,1428…). Только около 1600 г., больше чем за тридцать лет работы, Лудольфу ван Цейлену удалось ценой тяжких усилий рассчитать следующую величину числа π:
Именно результатом ван Цейлена мы воспользовались для числа из нашего примера с шифровкой Смайли. Правда, использование этой последовательности было для Смайли и Цирка неслыханно рискованным, ибо число π является одним из самых известных чисел в мире. С помощью электронно-вычислительных машин и специальных программ, которые считают намного быстрее, чем Архимед, число π было рассчитано с точностью до нескольких триллионов знаков после запятой. Величина π представляет собой одно из чисел, какие французский математик Эмиль Борель за неимением, видимо, более подходящего слова назвал в 1909 г. нормальными. Если рассмотреть достаточно длинный отрезок десятичного представления числа π, скажем один миллион следующих друг за другом разрядов, то выяснится, что каждая из десяти цифр встретится в этом отрезке приблизительно сто тысяч раз. Каждая из ста пар цифр (от 00 до 99) встретится в этом отрезке приблизительно десять тысяч раз, а каждое из тысячи сочетаний из трех цифр встретится в выбранном отрезке около тысячи раз.