Читаем Числовая символика Средневековья. Тайный смысл и форма выражения полностью

Существовавшие четыре элемента во многом влияли на стабильность мышления многих греческих философов, полагавших, что есть четыре, вместо пяти, постоянных тела. Платон или подчеркивал, что пятый включает и управляет остальными четырьмя, или обходил выдвинутое положение, когда заявлял, что додекаэдр, двенадцатигранник с 12 пятиугольными лицевыми сторонами, «используется, чтобы приукрасить Вселенную созвездиями». Позже философы уделяли особое внимание определению природы двенадцатигранника.

Здесь, как и в «Республике», порядок осуществления действия и терминология геометрические по своим свойствам. «Свадебное число» «Республики» образуется из известных 3, 4, 5 правильных треугольников, знакомых египтянам по крайней мере уже в 1000 году до н. э. Они явно любимые фигуры и самого Пифагора. Вероятно, так вполне было в Античности, где измерения оказывались необычно рациональными и чьи стороны, 3 и 4, первые ровные числа и первое солидное число, объединялись, чтобы произвести гипотенузу, 5, число постоянных тел.

Краткое изложение Эвклидом трудов греческих математиков также свидетельствует о преобладании геометрического мышления над арифметическим и обнаружении гармонических пропорций, приписанных Пифагору. Должно быть, оно происходит из геометрического опыта прижимания натянутой струны или наблюдения за относительным весом кузнечных молотов.

Из геометрии вытекает пифагорейская концепция совершенного числа, которым является сумма не ее делителей, а ее кратных частей. Она, должно быть, придает особый вес их философии, обнаруживая, что первое совершенное число 6 = (1+ 2 + 3) находится в области больших 3, 4, 5 правильных треугольников, а второе совершенное число — 28 — оказывается астрологическим значительным.

Подобное сочетание философии и геометрии побуждало рассматривать «математику» и «пифагорейство» как почти трансформируемые понятия. Некоторые пифагорейские открытия, например различение четных и нечетных чисел, простого числа, оказывались исключительно математическими.

Другой пример организации рациональных целых чисел образуется по аналогии с точными числами. Далее начинают классифицировать числа, подразделяя на простые и составные, исходя из отношений числа к кратным частям. Сказанное относится также и к геометрической концепции.

Согласно терминологии, используемой в алгебре, кратные части чисел являются делителями, исключающими себя. Следовательно, простое число делится на единицу и самое себя. Так, например, делителями 6 являются 1, 2, 3 и 1 + 2 + 3 = 6. Составное число то, чьи части складываются в сумму меньшую, чем число. Кратные части 14 — 1, 2, 7, целое же составляет всего 10. Избыточное число также предоставляет части для деления: 12 — 1, 2, 3, 4, 6, в сумме же 16.

Числа характеризуются и метафорически. Обнаружили, что сумма любого числа последовательных арифметических понятий (начинающихся с одного) образует треугольник 1, 2, 3.

Отсюда и распознавание треугольных номеров. Квадратные номера выстраиваются добавлением любого числа последовательных понятий серии нечетных чисел, начиная с 1. Последовательное добавление четных чисел, следуя той же самой схеме, создает продолговатые числа со сторонами, различающимися единицей. Продолговатое число еще является удвоением числа треугольного. Наконец, взятое восемь раз любое треугольное число плюс 1 равно квадрату.

При этом исключительное философское наполнение числа вовсе не теряли из виду. Многие, следуя руководству Платона и, возможно, Пифагора, продолжали видеть в декаде архетипический образец Вселенной, а в членах декады — воплощение божественных идей. Например, доктрина так называемых неопифагорейцев, преуспевавших с I столетия до н. э. вплоть до V века, создавших традицию, которая явно сохранилась и послужила примером для несохранившихся сочинений их предшественников.

Описание школы дошло до нас в сочинениях Филона Александрийского (Филона Иудейского, Philon Alexandreos; ок. 25 г. до н. э. — ок. 50 г. н. э.), Никомаха (греч. Νικόμαχος; ок. 60 — ок. 120 г. н. э.) и Плутарха из Херонеи (др. — греч. Πλούταρχος; ок. 45 — ок. 127 г. н. э.). Все авторы, представлявшие пифагорейство в Средние века, сходились в суждениях по поводу значения и свойств чисел. Для них число являлось первым принципом и арифметическим ключом к космическим тайнам. Никомах, в частности, писал: «Все, что по природе подчиняется систематическому методу, устроено во Вселенной как в частях, так и в целом, определено и сведено к соответствию с числом, благодаря продуманности и разумению его, того, кто создал все сущее. Ведь образец был устроен как предварительный набросок, доминирование числа, ранее существовавшего в сознании создавшего мир Господа.

Перейти на страницу:

Похожие книги

Память. Пронзительные откровения о том, как мы запоминаем и почему забываем
Память. Пронзительные откровения о том, как мы запоминаем и почему забываем

Эта книга предлагает по-новому взглянуть на одного из самых верных друзей и одновременно самого давнего из заклятых врагов человека: память. Вы узнаете не только о том, как работает память, но и о том, почему она несовершенна и почему на нее нельзя полностью полагаться.Элизабет Лофтус, профессор психологии, одна из самых влиятельных современных исследователей, внесшая огромный вклад в понимание реконструктивной природы человеческой памяти, делится своими наблюдениями над тем, как работает память, собранными за 40 лет ее теоретической, экспериментальной и практической деятельности.«Изменчивость человеческой памяти – это одновременно озадачивающее и досадное явление. Оно подразумевает, что наше прошлое, возможно, было вовсе не таким, каким мы его помним. Оно подрывает саму основу правды и уверенности в том, что нам известно. Нам удобнее думать, что где-то в нашем мозге лежат по-настоящему верные воспоминания, как бы глубоко они ни были спрятаны, и что они полностью соответствуют происходившим с нами событиям. К сожалению, правда состоит в том, что мы устроены иначе…»Элизабет Лофтус

Элизабет Лофтус

Научная литература / Психология / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература
Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература