Читаем Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу полностью

Мощные аппаратные возможности обработки данных. В последние несколько десятков лет мы видели, как мощность оборудования и технологий росла по экспоненте. Ни одна инновация в истории не улучшалась и не проникала во все с такой скоростью. Закон Мура (Moore’s Law), согласно которому число транзисторов на микросхеме (а значит, и его производительность) удваивается приблизительно каждые два года, продолжает действовать, хотя недавно отпраздновал 50-летний юбилей. Однако недавно он был турбирован облаком, которое позволяет сверхмощным компьютерам объединяться друг с другом. Для сравнения: у сильной машины может быть впечатляющее количество лошадиных сил, как, например, четыреста тридцать пять лошадиных сил под капотом Ford Mustang GT, но вы не можете склеить два «мустанга», чтобы удвоить скорость. В то время как один компьютер может получить доступ к множеству других и выдать молниеносный результат. Таким образом, каждый раз, пользуясь Google, Facebook или Amazon, вы подключаетесь к группе связанных, супербыстрых серверов.

Огромное количество данных. Данные – топливо новой экономики. Соотнесите этот факт с примером оператора такси, приведенным выше. В старые добрые времена, скажем, в 2012-м, ваша поездка собрала бы, наверное, три вида «данных»: запись вашего телефонного звонка с заказом такси, записи диспетчера и водителя, сделанные от руки, и детали оплаты (и конечно, эти рукописные записи редко проверяли или анализировали). Сравните это с типичной поездкой на Uber, после которой сохранится запись о вашем запросе, локации, времени, маршруте поездки, использованном устройстве, оплате и чаевых, водителе, пассажире, рейтинге водителя и рейтинге пассажира. А затем умножьте все это на более чем два миллиарда поездок, предпринятых (к середине 2016 года) через Uber.

Коротко говоря, три эти специфические черты – самообучающееся ПО, мощные возможности аппаратной обработки данных и невероятное количество данных – объединяются, чтобы оживить интеллектуальные системы (кстати говоря, в некоторых кругах о них сейчас говорят как о программных «платформах», но для ясности и последовательности будем использовать термин «интеллектуальные системы»). Далее в главе расскажем, как эти участки сочетаются друг с другом. А прежде чем взяться за это, полезно дать несколько определений самой противоречивой и неверно понимаемой части машины – искусственному интеллекту.

<p>Искусственный интеллект: почему узкое понимание – лучшее понимание</p>

Термин «искусственный интеллект» настолько часто употребляется, что на самом деле вызывает больше путаницы, чем ясности. На рынке существует много определений, и почти все подчеркивают сравнение с человеческими существами. Подобные определения, например данное в словаре Мерриам-Уэбстер («способность машины имитировать поведение разумного человека»), немедленно отправляют многих из нас по ошибочной дорожке, поскольку мы начинаем думать: «Какой человеческий разум может быть и будет сымитирован?» Мы считаем, что это неправильно.

Наше определение проще:

ИИ – это область компьютерной науки, занимающаяся машинами, которые учатся.

Это выражение яснее. Стремящиеся к антропоморфизму определения ИИ неверны по двум причинам.

1. ИИ, дающий бизнес-результаты, скорее сосредоточен на том, что по-настоящему хорошо делают машины, а не пытается повторить то, что уже хорошо делают люди.

2. Люди уже давно зарекомендовали себя как несовершенные «машины» (просто посмотрите шестичасовые новости). Есть некий нарциссизм в том, чтобы считать проектной целью создания новой машины именно человека.

Таким образом, ИИ – это не о построении робота, передразнивающего форму и поведение человека. Вместо этого примененный на практике ИИ представляет собой следующее поколение компьютерных систем, которые, как старые системы, располагаются в кондиционируемых компьютерных комнатах, а доступ осуществляется через сети и системы (как те приложения на вашем смартфоне), которые вы, может быть, и не видите, но регулярно используете.

Но это определение – только начало. Прорываясь через мешанину определений, мы нашли крайне полезным разделить ИИ на три подкласса2:

1. Узкий ИИ;

2. Общий ИИ;

3. Супер ИИ.

Перейти на страницу:

Похожие книги

Биология для тех, кто хочет понять и простить самку богомола
Биология для тех, кто хочет понять и простить самку богомола

Биология – это наука о жизни, но об этом все знают, как знают и о том, что биология считается самой важной из наук, поскольку в числе прочих живых организмов она изучает и нас с вами. Конфуций сказал бы по этому поводу: «благородный человек изучает науку, которая изучает его самого, а ничтожный человек ею пренебрегает». И был бы тысячу раз прав.У биологии очень необычная история. С одной стороны, знания о живой природе человечество начало накапливать с момента своего появления. Первые люди уже разбирались в ботанике и зоологии – они знали, какие растения съедобны, а какие нет, и изучали повадки животных для того, чтобы на них охотиться. С другой стороны, в отдельную науку биология выделилась только в начале XIX века, когда ученые наконец-то обратили внимание на то, что у всего живого есть нечто общее, ряд общих свойств и признаков.О том, чем отличает живое от неживого, о том, как появилась жизнь и многом другом расскажет эта книга.В формате PDF A4 сохранен издательский макет.

Андрей Левонович Шляхов

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука