Читаем Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу полностью

А теперь подумайте о высоко персонализированных лентах новостей, которые мы видим сегодня: местные новости, погода, спорт, биржевые данные и информация о дорожном трафике. Все по вашему запросу, в любое время и в любом месте. Задумайтесь о пермутациях, неизбежных при создании этой индивидуализированной, организованной информации. В городе средних размеров, примерно в пятьсот тысяч жителей, просто при выполнении персонализированных запросов по пяти основным новостным переменным (новости, погода, спорт, биржа, трафик) выйдет 3,1228 комбинаций! Очевидно, математически невозможно вообразить, чтобы новостные редакции прежних лет хотя бы помыслили о доставке персональных новостей каждому жителю города. В то время как сегодня программы-боты, перекомбинируя различные участки интеллектуального труда, делают это без всяких усилий (и мы более детально покажем, как они это делают, в главе 7). Поэтому автоматизация интеллектуального актива – это не перетягивание одеяла на себя, не просто вопрос замещения существующих рабочих ресурсов. И это не просто скорость обработки – часто обнаруживается, что это уровень массовой кастомизации, который был невозможен до появления интеллектуальных систем.

Этот феномен интеллектуальных ресурсов – кодификация, рекомбинация и перенаправление – имеет широкое применение. В дальнейшем рассмотрим, как он повлияет на основные процессы в вашем бизнесе (с точки зрения продаж, человеческих ресурсов, финансов или управления логистикой): как на модернизацию, так и на значительное увеличение скорости обработки, качества, персонализации и общую производительность.

Смысл в том, что интеллектуальный труд очень отличается от труда ручного. Когда бот применяется к интеллектуальным процессам, пусть даже исключительно с целью автоматизации, лежащие в основании интеллектуальные ресурсы становятся богаче и могут снова и снова использоваться интересными и продуктивными способами. Границы рабочего потенциала (и соответствующий результат) действительно расширяются, устраняя таким образом возможность взаимно однозначной замены рабочей функции, что происходило при автоматизации ручного труда.

<p>Не путайте работу с задачами</p>

По этой причине возникает вторая ошибка, которую разделяет большинство аналитиков, ожидающих Страшного суда: неспособность увидеть критически важное различие между «работой» и «задачей». В этих исследованиях «работа», как правило, представлена с двух точек зрения (то есть «автоматы вытеснят их с работы» или «автоматы не вытеснят их с работы»). Однако в этом есть чрезмерное упрощение: любой интеллектуальный труд предполагает целый набор задач. Некоторые из этих задач созрели для автоматизации, в то время как другие не созреют никогда. В подавляющем большинстве случаев автоматизированы или заменены программами-ботами будут участки работы, тогда как другие участки не будут тронуты или даже будут расширены.

Представьте себе Тамару, бухгалтера из вашего финансового отдела. Ее работа состоит из десятков задач, среди которых можно выделить следующие:

• документирование финансовых транзакций;

• подготовка доходной, долговой и бухгалтерской отчетности;

• подготовка налоговых деклараций;

• контроль транзакций и финансовой отчетности;

• консультирование по корпоративной политике и внутреннему распорядку;

• сверка финансовых расхождений;

• создание отчетов о прибылях и убытках;

• стратегическое консультирование;

• отслеживание полноты данных.

Некоторые из этих задач будут автоматизированы с использованием новых машин или с их помощью будут выполняться значительно более эффективно, но не все. Работа Тамары изменится, но не закончится полностью. Вообразить, что вся бухгалтерская профессиональная деятельность в скором времени исчезнет и будет замещена программным обеспечением, значит, угодить в ловушку чрезмерного экстраполирования того, как и как быстро технологии изменят ход вещей в реальном мире.

Одно из лучших исследований на тему замещения рабочих мест машинами было проведено компанией Forrester Research, которая применила подход «на основании задачи» и «на основании работы». Во многих случаях «роботизированная автоматизация процессов» забирает лишь участки работы, и чаще всего те, которые человек считает трудными и монотонными. Таким образом, во многих случаях машине отходит 20% рутинных – и очень скучных – обязанностей.

Вот как говорит об этом Forrester:

Перейти на страницу:

Все книги серии Top Business Awards

Похожие книги

Ценность ваших данных
Ценность ваших данных

Что такое данные и как они появляются? Как их хранить и преобразовывать? Как извлечь ценность из имеющихся информационных ресурсов и непрерывно ее повышать? Как ускорить импортозамещение? Как наладить управление данными, чтобы достойно противостоять дизруптивным воздействиям? Все это и многое другое вы найдете в книге «Ценность ваших данных».Книга состоит из двух частей. В первой прослеживается смена парадигм в отношении к данным, происходившая от первой научной революции до четвертой промышленной.Подробно рассматриваются особенности данных как наиболее ценного актива организации и основные барьеры на пути извлечения из них ценности. Вторая часть посвящена описанию основных подходов к устранению барьеров. Анализируются ключевые области управления данными на разных этапах их жизненного цикла – от планирования до расширения возможностей применения.Зачем читатьДанные в качестве самостоятельного суперценного актива стремительно входят в повестку дня как менеджмента и собственников компаний, так и руководителей государственных органов и учреждений. И очень важно иметь источники информации, позволяющие его осознать, научиться с ним работать и превратить в конкурентное преимущество. Предлагаемая книга – одно из тех изданий, которые позволяют получить своевременные инструменты для создания современной высокоэффективной организации и вывода своего бизнеса в лидеры рынка.Для когоКнига будет полезна как новичкам в вопросах управления данными, так и опытным специалистам, которые хотят углубить свои знания в этом направлении.

Александр Константинов , Николай Скворцов , Сергей Борисович Кузнецов

Деловая литература
Как гибнут великие и почему некоторые компании никогда не сдаются
Как гибнут великие и почему некоторые компании никогда не сдаются

Джим Коллинз, взирая взглядом ученого на безжизненные руины когда-то казавшихся несокрушимыми, а ныне канувших в Лету компаний, задается вопросом: как гибнут великие? Действительно ли крах происходит неожиданно или компания, не ведая того, готовит его своими руками? Можно ли обнаружить признаки упадка на ранней стадии и избежать его? Почему одни компании в трудных условиях остаются на плаву, а другие, сопоставимые с ними по всем показателям, идут ко дну? Насколько сильными должны быть кризисные явления, чтобы движение к гибели стало неотвратимым? Как совершить разворот и вернуться к росту? В своей книге Джим Коллинз отвечает на эти вопросы, давая руководителям обоснованную надежду на то, что можно не просто обнаружить и остановить упадок, но и возобновить рост.

Джим Коллинз

Деловая литература