Это важно для нас, потому что все гены клеточных организмов представлены двухцепочечными молекулами ДНК, чрезвычайно точную репликацию которых осуществляет сложный аппарат (включающий от 30 до 40 разных белков). Высокая точность копирования достигается за счет того, что несколько белков, участвующих в репликации ДНК, занимаются исключительно редактированием и исправлением вновь образуемой копии ДНК. Например, если во время репликации вместо С встанет А, фермент- «редактор» заметит это, так как будет нарушен нормальный процесс спаривания оснований, и вставит на нужное место правильное основание. Если химическое повреждение основания происходит после того, как вновь синтезированная цепочка соединяется с родительской (матрицей), образуется «изгиб» двойной спирали, который запускает редакторские функции ферментного комплекса, вырезающего поврежденную последовательность и синтезирующего заново правильную копию (рис. 2.7). Это сродни процессу, который происходит при проверке полноты данных в ходе передачи электронного сообщения. Вот почему генные мутации, возникающие исключительно на уровне ДНК, — чрезвычайно редкие события. Мутации, которые мы видим, это те мутации, которым удалось пройти сквозь все нормальные редакторские и корректорские кордоны репликационной машины. Репликация ДНК — это процесс копирования очень высокой точности. В самом деле, на каждые миллиард реплицированных оснований остается нераспознанной только одна ошибка.
Таким образом, древний мир РНК представляется «эволюционирующим хаосом», в котором выживали наиболее приспособленные самореплицирующие молекулы. Манфред Эйген (Eigen) с коллегами провели поучительное исследование, которое показало, каким образом склонное к ошибкам копирование РНК и отбор могут давать квази-оптимальную популяцию молекул РНК. Эта популяция молекул РНК способна быстро эволюционировать при изменении окружающей среды.
Одноцепочечная РНК химически менее устойчива, нежели двухцепочечная ДНК. Очевидно, что в какой-то момент далекого эволюционного прошлого ранним формам жизни стало выгодно стабилизировать свой наследственный чертеж. Это послужило началом перехода от мира РНК к миру ДНК. Первый необходимый шаг на пути к миру ДНК — это передача информационной функции от РНК-последовательности к ДНК-последовательности, т. е. появление обратной транскрипции.
Рис. 2.7. Репарация ДНК. Ошибки в ДНК-последовательности оснований, которые передаются по наследству, вносят вклад в генетическую изменчивость популяций и, таким образом, в эволюцию путем естественного отбора. Ошибки, или мутации, редки, потому что аппарат репликации ДНК осуществляет несколько последовательных редакций и проверок молекулярной целостности двойной спирали. На рисунке схематично показан один из типов исправления ошибок, включающий удаление химически измененного или неправильного основания, которое не может спариваться с комплементарным основанием в другой цепи. Короткий участок вокруг неспаренного (или поврежденного) основания удаляется специальными разрезающими ферментами (эндонуклеазами). Образовавшийся пробел заполняется в результате репаративного синтеза ДНК в направлении от 5' к 3'. В качестве матрицы для этого синтеза служит другая цепь.
Наиболее вероятно, что древняя обратная транскриптаза была РНК-ферментом (рибозимом). Появление более сложных белковых обратных транскриптаз произошло позже.