Важно упомянуть еще два момента, оказавших влияние на развитие биологической науки. Первое — это, не побоимся сказать, обожествление Дарвина, особенно в Британии. Дарвина превратили в икону, однако мы полагаем, что на определенном этапе это было действительно необходимо для того, чтобы внедрить в умы человечества ключевую идею о естественном отборе случайных изменений. Без этой концепции было бы трудно объяснить многие биологические явления, будь то Ц структура популяции, изменчивость генов или работа иммунной системы. Это было необходимо для противостояния наивному креационизму, утверждавшему, что все виды возникли одновременно и относительно недавно.
Согласно дарвиновской теории эволюции, для появления новых форм и видов необходимо длительное время. Этот факт согласуется с данными современных палеонтологических и геологических исследований. Действительно, между всеми существующими в настоящее время живыми организмами установлено молекулярно-эволюционное родство. Получение данных, позволивших сделать столь важные заключения, стало возможным благодаря появлению в конце 80-х гг. приборов для автоматического определения последовательности нуклеотидов в ДНК (ДНК-секвенаторы). Новая технология дала возможность генетикам и молекулярным биологам получать точную информацию о большом числе генов (о последовательности нуклеотидов в ДНК). Большая часть этих данных собрана в обширных общедоступных базах данных в Интернете, например в Genbank
.Присуждение в 1993 г. Нобелевской премии по химии Кэри Маллису (Mullis) за открытие и разработку метода полимеразной цепной реакции (ПЦР) подчеркивает важность новых технологий в получении научного знания. Метод ПЦР используется с конца 1980-х годов. Он дает возможность увеличивать число копий отдельного участка ДНК в миллионы раз. После этого с помощью секвенатора можно легко определить порядок нуклеотидов A, G, С и Т в этом фрагменте (определения терминов даны в табл. 1.2). Метод ПЦР стал для генетиков новым мощным «телескопическим» средством, позволяющим увидеть молекулярное строение и информационное содержание различных последовательностей нуклеотидов. Именно метод ПЦР, который можно назвать «генетическим копированием», побудил к созданию книги и фильма «Парк юрского периода», показав возможность (пока нереальную) того, что сохранившиеся древние ископаемые останки ДНК можно размножить, а затем с помощью клонирования «воскресить» вымерших животных.
Основные генетические термины
• ДНК
Дезоксирибонуклеиновая кислота. Очень длинная полимерная молекула, состоящая из четырех типов нуклеотидов, содержащих информационные «основания» А (аденин), G (гуанин), С (цитозин) и Т (тимин). Хромосомы представляют собой длинные последовательности ДНК, включающие миллионы оснований (в клетках эукариот хромосомная ДНК соединена с белком). Молекула ДНК в хромосоме находится в форме двухцепочечной спирали (см. гл. 2). Символически последовательность нуклеотидов в ДНК можно записать так:
5'-AGCTTATTGCATAAGCGCGAT-3'
• 5'и3'
Это - обозначения соответственно левого и правого концов последовательности оснований ДНК или РНК.
• Генетический код
Участок ДНК, который кодирует информацию, определяющую последовательность аминокислот (белок), считывается триплетами оснований, или
Ser-Leu-Leu-His-Arg-Asp
• РНК
Рибонуклеиновая кислота. Очень длинная полимерная молекула, похожая на ДНК; в ее состав входят четыре типа оснований А (аденин), G (гуанин), С (цитозин) и U (урацил), Информационная РНК, которая кодирует аминокислотную (белковую) последовательность, скопирована с гена. РНК обычно одноцепочечная. Например, символическую последовательность оснований информационной РНК можно записать так:
5'-AGCUUAUUGCAUAAGCGCGAU-3'
• Нуклеиновые кислоты
Химический термин для обозначения ДНК и РНК.
• Белки (протеины)
Белки - это длинные полимеры, состоящие из аминокислот. Вместе с сахарами и жирами белки являются строительными блоками нормальной соматической клетки. Химическое строение аминокислоты совершенно иное, чем нуклеиновой кислоты.