Читаем Что ищут «археологи космоса»? полностью

На фоне мощных спектральных линий водяного пара отчетливо (хотя и намного слабее) проявились полосы углекислого газа и других, скорее всего углеводородных примесей. Что касается уже видоизмененных — «вторичных» — молекул, то среди них исследователи опознали хорошо знакомые по наземным наблюдениям гидроксил, циан, двухатомный углерод и т. д.

Вблизи Солнца комета обильно парила и пылила. Пылевые счетчики, скрупулезно подсчитывавшие каждую попавшую на их детекторы частицу, установили, что ежесуточно кометное ядро выбрасывало около миллиона тонн пыли! Причем наиболее интенсивные пылевые фонтаны приходились на зоны с особо мощными истечениями газов. Любопытно, что при таком расходе — около 100 млн. т на виток — это небесное тело массой около 200 млрд. т проживет еще не одно тысячелетие.

Итак, концепция «айсбергов» получила подтверждение? Не будем торопиться. Мешает один бесспорно установленный факт: оптическими измерениями установлено, что отражательная способность, или, как говорят, физики, альбедо ядра, имеет низкую — около 45% — величину.

Такое же альбедо наблюдается у колец Урана и недавно открытых его спутников, а также у темных областей Япета. Это свидетельствует, по-видимому, — о наличии первичного углистого вещества, аккреция (то есть выпадение под действием гравитации) которого произошла на самых ранних стадиях развития Солнечной системы.

Но это что-то очень мало похоже на поверхность ледяной глыбы. К тому же она… горячая! Этот факт установлен ИК-спектрометрами «Вег». Измерения показали, что температура излучающей области достигала 100 °C.

Возможно ли, чтобы ледяной панцирь айсберга, пусть даже и космического, мирно уживался с «пламенем» его поверхности?

Но вспомним потемневшие весенние сугробы на городских улицах, долго тающие под мартовским солнцем. Немногие знают, что поверхность сугроба разогревается до 20–30 °C, но благодаря отличным теплоизоляционным свойствам образовавшейся на нем пористой корочки из пыли, гари и копоти холод внутри него сохраняется многие дни…

Чем не модель кометы, позволяющая удачно разрешить многие противоречия? Кометное ядро — это водный лед, в кристаллическую решетку которого внедрились примесные молекулы. В этот лед, как показали эксперименты, вкраплены различные тугоплавкие частицы метеоритного происхождения. По мере бурного испарения льда на его поверхности скапливается черный пористый слой, обладающий низкой теплопроводностью. По-видимому, ядро покрыто коркой из высокополимерного органического вещества. Поглощая солнечное излучение, она часть энергии отражает (в ИК-диапазоне) в окружающее пространство, а часть тепла передает ледяному панцирю. Образующийся пар время от времени пробивается через поры оболочки, толщина которой, по разным оценкам, колеблется от нескольких миллиметров до нескольких сантиметров, а если это не удастся — взламывает ее. Тогда с поверхности ядра начинают бить мощные газовые струи, увлекающие за собой пылевые частицы. Очевидно, срок жизни слоя невелик: он полностью обновляется примерно за сутки.

Особо уникальные данные о составе кометного вещества собрал пылеударный масс-спектрометр «Пума», который проанализировал химический состав около 2000 каменистых и металлических частиц, выброшенных газовыми струями. Они оказались метеоритного происхождения, и в них преобладали натрий, магний, кальций, железо, кремний, а также вода и углерод. В этом весьма пестром и сложном перечне элементов и их распределении закодированы тепловые процессы, происходившие на ранних этапах образования Солнечной системы.

Анализ пылевых частиц убедительно продемонстрировал присутствие в них сложных органических соединений. По всей видимости, совокупность имеющихся данных о пыли позволяет сделать вывод о ее межзвездном происхождении.

Радиообраз юной Вселенной

Радиообраз юной Вселенной в первые ее миллионолетия впервые в мире построен советскими учеными. Более полугода на борту высокоапогейного спутника «Прогноз» работал самый маленький в мире радиотелескоп, принимавший микроволновое фоновое излучение, пришедшее к нам из далекого прошлого Вселенной.

Жаркая июльская полночь. Байконур.

«„Прогноз“ на проводе, — объявляет дежурный оператор. — Даю связь».

Вращаются магнитные диски, бегают каретки приборов. Но что это? Самописцы — все как один — бесстрастно вычеркивают незамысловатые, как трамвайные пути, шумовые дорожки.

Оператор вопросительно смотрит на разработчиков радиотелескопа, присутствующих на первом сеансе связи.

«Все в порядке, — уверенно отвечает заведующий одной из лабораторий ИКИ кандидат физико-математических наук И. Струков, хотя, наверное, у него на душе кошки скребут… — Аппаратура в норме», — говорит он. Однако любой инженер, взглянув на то, сколь глубоко утонул в шумах полезный сигнал, вполне может в этом усомниться. Но Струков-то, как никто другой, знал, что для того чтобы из этого океана шума вытек слабый ручеек полезной информации, их радиотелескоп должен набрать огромную статистику, провести множество — миллиарды — измерений.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже