Читаем Что ищут «археологи космоса»? полностью

На борту «Веги» работал и инфракрасный спектрометр французского производства, оборудованный тремя оптическими каналами. Два из них предназначены для работы в спектроскопическом режиме, третий — снимал «теневой» портрет ядра кометы в инфракрасных лучах. Для изучения взаимодействия солнечного ветра с атмосферой и ионосферой кометы на борту АМС также работал сконструированный специалистами ВНР, ФРГ и СССР детектор, с помощью которого изучались ионы, ускоренные в районе кометы. Для измерения распространяющихся в комете электромагнитных волн, регистрируемых двумя антеннами, предназначался анализатор плазменных волн, разработанный чехословацкими, польскими, французскими и советскими специалистами.

На первый взгляд может показаться, что ряд приборов просто-напросто дублировал друг друга; больше того, некоторые данные — о скорости образования кометных частиц, об их размерах и параметрах их движения — уже известны специалистам благодаря косвенным измерениям.

На самом деле это не так. До сих пор большинство данных получали в результате спектрометрических измерений, причем только в видимом и ИК-диапазоне. Но кометный эксперимент охватывал всю «радугу» спектра, тем самым закрывая максимум «белых пятен». До сих пор не хватало прямых измерений вблизи ядра кометы.

Чтобы получить такую исчерпывающую информацию о простой кометной пылинке, нужно суметь зарегистрировать удар по мишени каждой отдельной частицы. Специалистам пришлось ломать голову над тем, как перевести вещество пылинки из твердого в плазменное состояние (непременное условие всех спектроскопических методов исследования вещества). Столкновение на скорости 78 км/с приводило к мгновенному испарению объекта исследования. Разумеется, при столкновении испарялась не только пылевая частица: какая-то доля материала мишени тоже уходила в облачко плазмы. Но зная, что мишень сделана из чистого серебра, не представляло большого труда отделить, как говорится, зерна кометного вещества от плевел мишени.

Поскольку объем получаемых прибором сведений исключительно велик (вблизи кометы регистрировалось до 12 ударов в секунду, и всего была собрана информация о нескольких тысячах частиц), а передача этих сведений на Землю ограничена пропускной способностью телеметрических каналов связи, то в составе прибора предусмотрен специализированный микропроцессор, который по нескольким программам производил предварительную обработку информации и самостоятельно отбирал наиболее «информативные» удары.

Но ведь пыль пыли рознь: в космическом пространстве оказывались и частицы, не имеющие никакого отношения к комете. Как в течение долгого пути уберечь чувствительные элементы прибора от их воздействия?

— Мы поступили так же, как автомобилист на пыльном проселке, — рассказывал мне один из разработчиков прибора В. Хромов, — когда, открыв жалюзи, он создает в салоне давление выше атмосферного. Мы закрыли входной патрубок корпуса прибора специальной крышкой и подали внутрь газ. Снаружи — космический вакуум, внутри — почти атмосферные условия. Ни одна посторонняя частица в прибор не попадет: сгорит. А за 10 дней до сближения с кометным ядром по команде с земли крышка открылась и прибор — «Пума» — приступил к работе.

Но вот на мишени «взорвался» мельчайший кусочек кометы — и в миллиардную долю секунды образовался плазменный сгусток. Что дальше? Возникла яркая вспышка. Она регистрировалась фотоумножителем, «запускающим» отсчет времени.

Основной рабочий инструмент «Пумы» — ускоряющее электромагнитное поле. Ионы разных элементов обладают разной массой. Поэтому одно и то же напряжение разгоняло легкие ионы до значительно больших скоростей, чем тяжелые. А значит, на регистрирующий элемент прибора — коллектор — они приходили в разное время. Зная их время в пути, можно сказать, о каком элементе идет речь.

Правда, тут есть одна тонкость. Ускоряющее поле сообщало всем ионам с одинаковой массой одинаковую энергию. Но в начальный момент времени, при ударе разных тяжелых и легких пылинок о мишень, ионы с одинаковой массой приобретали все-таки чуть разную энергию. А это приводило бы к неодновременности их попадания на коллектор, чего быть не должно. Выравнивание скоростей ионов происходило в рефлекторе. Это своего рода электростатическое зеркало обладает свойством притормаживать слишком быстрые и «подгонять» медленные ионы. Принцип его действия можно пояснить таким примером.

Представьте себе шарик на резинке. Бросаете его в сторону — резинка шарик возвращает. Чем сильнее бросок, тем больше возвращающая сила. Замените шарик ионом, возвращающую силу резинки — напряженностью поля, и вы получите представление о том, как работало электростатическое зеркало. Далее, зная химический состав пылинок, их спектр, массу, частоту соударений, можно воссоздать картину их распределения в кометной атмосфере в зависимости от размеров, вычислить, на каком расстоянии от ядра находилась частица той или иной массы.

* * *

Перейти на страницу:

Все книги серии Знак вопроса

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература