Читаем Что мы думаем о машинах, которые думают. Ведущие мировые ученые об искусственном интеллекте полностью

<p>Проектировочные машины для решения проблемы сложности мира</p>Питер НорвигСпециалист по теории вычислительных систем, директор по исследованиям Google, Inc.; автор, совместно со Стюартом Расселом, книги «Искусственный интеллект: Современный подход» (Artificial Intelligence: A Modern Approach)[52]

В 1950 году Алан Тьюринг разумно заметил, что вопрос: «Способны ли машины думать?» — бесполезен, и заявил: «Мне нужно заменить этот вопрос другим». В итоге он создал набор тестов, измеряющих возможности машины на основе того, насколько успешно она их выполняет, и, таким образом, заменил бинарный ответ на вопрос: «Способны ли машины думать?» — детальной оценкой: «Какие задачи способны выполнять машины?»

Потому давайте рассмотрим, что умеют делать машины.

Здесь и много где еще умные люди говорят нам, чтобы мы не беспокоились по поводу искусственного интеллекта, в то время как другие, не менее умные, люди заявляют, что беспокоиться надо. Так кому верить? Пессимисты предостерегают нас: мол, мы не знаем, как делать большие, сложные системы ИИ безопасными и надежными. Это вполне разумно. Мы также не знаем, как делать безопасными и надежными большие, сложные системы без ИИ. Нам надо лучше прогнозировать, контролировать и сдерживать непредвиденные последствия использования машин, которые мы строим. Например, мы изобрели двигатель внутреннего сгорания 150 лет назад, и он по большей части хорошо служит человечеству, но его появление также привело к повсеместному загрязнению окружающей среды, политической нестабильности, вызванной проблемой доступа к нефти, более чем миллиону смертей ежегодно в результате автомобильных аварий и (как говорят некоторые) снижению социальной сплоченности людей.

Искусственный интеллект дает нам мощные инструменты для построения систем, и, как в случае с большинством мощных инструментов, использование построенных с их помощью систем неизбежно будет иметь и ожидаемые, и непредвиденные последствия. Интересными проблемами, уникальными для ИИ, являются адаптивность, автономность и универсальность.

Системы, которые используют машинное обучение, адаптивны. Они изменяются со временем в зависимости от того, что они освоили на основе примеров. (Несмотря на то что вопрос о способности машин думать лингвистически противоречивый, в разговорном языке словосочетание «машины обучаются» вполне прижилось.) Адаптивность полезна. Мы хотим, например, чтобы программы автоматической проверки орфографии обучались новым терминам, таким как «биткоин», и чтобы нам при этом не надо было ждать очередной редакции словаря. Но иногда адаптивные программы можно подтолкнуть, пример за примером, к такому состоянию, когда их ответы будут неверными. Как проектировщикам мостов приходится решать проблему бокового ветра, так и разработчикам систем искусственного интеллекта тоже надо решать такие проблемы.

Некоторые критики опасаются, что системы ИИ строятся в рамках базовой схемы, ориентированной на максимальную полезность. Такая система оценивает текущее состояние мира, рассматривает все действия, какие может предпринять, моделирует их вероятные результаты, а затем выбирает то, что приведет к наилучшему. Она может совершать ошибки в любой момент в ходе этого процесса, но главная проблема тут состоит в определении наилучшего результата, того, чего именно мы хотим. Если мы неверно опишем наши пожелания, то можем получить совсем не то, что нам нужно. История свидетельствует, что такое случается с самыми различными системами, которые мы создаем, а не только с искусственным интеллектом. Предположим, что Конституция США — это компьютерная программа, в которой описаны наши желания; в таком случае отцы-основатели сделали то, что мы сейчас считаем ошибкой в определении, и мы потеряли более 600 000 жизней, прежде чем Тринадцатая поправка исправила эту ошибку. Подобным образом мы создали систему фондовых бирж, дающую нам возможность создавать пузыри, которые уже не раз лопались. Эти проблемы имеют важное значение для проектирования систем; мир сложен, и в нем непросто действовать.

Перейти на страницу:

Все книги серии Искусственный интеллект

Роботы наступают. Развитие технологий и будущее без работы
Роботы наступают. Развитие технологий и будущее без работы

Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого. Цель автора — не испугать читателя, а привлечь внимание к этим непростым темам. Эту увлекательную и содержательную книгу стоит прочитать всем, кто хочет понять, как развитие новых технологий влияет на экономические перспективы, на наших детей и на общество в целом.

Мартин Форд

Публицистика
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Homo Roboticus? Люди и машины в поисках взаимопонимания
Homo Roboticus? Люди и машины в поисках взаимопонимания

Хотим мы этого или нет, но скоро нам придется сосуществовать с автономными машинами. Уже сейчас мы тратим заметную часть времени на взаимодействие с механическими подобиями людей в видеоиграх или в виртуальных системах – от FAQbots до Siri. Кем они станут – нашими слугами, помощниками, коллегами или хозяевами? Автор пытается найти ответ на философский вопрос о будущих взаимоотношениях людей и машин и представляет читателям группу компьютерщиков, программистов, робототехников и нейробиологов, считающих, что мы подходим к переломному моменту, когда искусственный интеллект превзойдет человеческий и наш мир безвозвратно изменится. Однако место человека в этом новом мире специалисты видят по-разному, и автор знакомит нас со всем спектром мнений. Центральная тема книги – двойственность и парадоксальность, присущие деятельности разработчиков, которые то расширяют возможности человека, то заменяют людей с помощью создаваемых систем.

Джон Маркофф

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература