Читаем Что случилось с климатом полностью

Около 30 % солнечной энергии отражается облаками, поверхностью Земли и рассеивается атмосферой обратно в космос. Остальные 70 % передаются климатической системе планеты. Примерно треть этой величины поглощается озоном и водяным паром, капельками воды в облаках и частицами пыли, нагревая атмосферу (рис. 1.4), а две трети – поверхностью Земли. Эта энергия передается атмосфере путем конвекции, затрачивается на испарение воды (скрытое тепло) и испускается в виде теплового излучения в инфракрасном диапазоне. Упрощенная картина радиационного баланса поверхности Земли, ее атмосферы и планеты в целом представлена на рис. 1.4.

Мы знаем, сколько энергии Земля получает от Солнца (0,7 · 340 = 238 Вт/м2). Любой бюджет должен быть сбалансирован – это необходимо для поддержания постоянных условий, в нашем случае – для сохранения постоянной температуры. Значит, столько же энергии Земля отдает в космическое пространство в виде длинноволнового излучения. Зная поток излучения, можно рассчитать[9] среднюю температуру земной поверхности. Расчет дает величину минус 19 °C. В действительности же температура гораздо выше, около +14 °C. Это происходит оттого, что атмосфера, подобно одеялу, задерживает тепло Земли. Она пропускает коротковолновое излучение Солнца внутрь и не выпускает длинноволновое излучение Земли наружу. Поглощая длинноволновое излучение, атмосфера, переизлучает его во всех направлениях, в том числе и в обратном. Это естественное явление называется парниковым эффектом. Поглощают инфракрасное излучение в основном водяной пар и углекислый газ, в меньшей степени – озон, метан, закись азота. Газы, молекулы которых состоят из двух одинаковых атомов, в том числе основные компоненты атмосферы (N2, O2), прозрачны для инфракрасного излучения. На Венере, где атмосфера в 93 раза плотнее земной и состоит почти полностью из углекислого газа, температура благодаря парниковому эффекту достигает почти 500 °С!


Рис. 1.4. Радиационный баланс Земли. Подробнее см. (Kiehl, Trenberth, 1997)

1.3. Состав и строение атмосферы

Газовая оболочка Земли – атмосфера – удерживается силой тяготения. Плотность и давление воздуха с высотой уменьшаются примерно по экспоненциальному закону. Четкой границы между атмосферой и космическим пространством нет, обычно за толщину атмосферы принимают высоту в 100 км.

Атмосфера нашей планеты состоит преимущественно из азота и кислорода. Третий по распространенности компонент – инертный газ аргон. В значительно меньших количествах содержатся углекислый газ, неон, гелий, метан, криптон, водород и закись азота, монооксид углерода (табл. 1.1). Кроме того, воздух может содержать до 5 % по объему паров воды[10].

Газовый состав атмосферы сформировался в результате ее эволюции; об этом будет более подробно рассказано в главе 3. Состав воздуха в масштабах нашей жизни можно считать постоянным. Большинство компонентов находятся в динамическом равновесии – сколько убывает, столько же и пополняется за счет тех или иных процессов. Исключение составляют лишь те, количество которых быстро растет в результате хозяйственной деятельности человека; в первую очередь это углекислый газ и метан.

Основной источник метана – болота и тундра; образуется он при бактериальном разложении органического вещества в анаэробных условиях. Антропогенные источники атмосферного метана – это в основном сельское хозяйство и добыча нефти и газа. В морской воде метан практически не растворяется, а выводится из атмосферы за счет фотохимического окисления.

Основные компоненты атмосферы – азот и кислород – имеют биогенное происхождение. Кислород образуется при фотосинтезе, азот – в результате бактериального восстановления нитратов. Аргон образуется в основном в результате радиоактивного распада калия-40, гелий – при распаде урана и тория. Вулканы выбрасывают диоксиды углерода и серы, хлороводород, фтороводород и другие газы. Некоторые компоненты, например, озон, образуются in situ[11], то есть в результате процессов в самой атмосфере.

Помимо компонентов, перечисленных в таблице 1.1, в атмосфере присутствуют многие вещества в следовых количествах: углеводороды (помимо метана), перекись водорода (H2O2), формальдегид (HCOH), оксиды азота (NOx), аммиак (NH3), диметилсульфид (CH3SCH3), сероводород (H 2S), сероуглерод (CS2), гидроксильные (OH·) и супероксидные радикалы (HO2·), пары ртути, радиоактивные инертные газы, в том числе радон, и многое другое. И хотя этих компонентов крайне мало в сравнении с основными, они могут существенно влиять на химические и физические процессы в атмосфере. Например, реакции с гидроксильными радикалами являются основным механизмом выведения из атмосферы большинства микрокомпонентов, того же метана. Радиоактивные инертные газы могут менять электропроводность атмосферы, влияя тем самым на количество гроз.


Таблица 1.1. ХИМИЧЕСКИЙ СОСТАВ СУХОГО ВОЗДУХА

Перейти на страницу:

Похожие книги

Усоногий рак Чарльза Дарвина и паук Дэвида Боуи. Как научные названия воспевают героев, авантюристов и негодяев
Усоногий рак Чарльза Дарвина и паук Дэвида Боуи. Как научные названия воспевают героев, авантюристов и негодяев

В своей завораживающей, увлекательно написанной книге Стивен Хёрд приводит удивительные, весьма поучительные, а подчас и скандальные истории, лежащие в основе таксономической номенклатуры. С того самого момента, когда в XVIII в. была принята биноминальная система научных названий Карла Линнея, ученые часто присваивали видам животных и растений имена тех, кого хотели прославить или опорочить. Кто-то из ученых решал свои идеологические разногласия, обмениваясь нелицеприятными названиями, а кто-то дарил цветам или прекрасным медузам имена своих тайных возлюбленных. Благодаря этим названиям мы сохраняем память о малоизвестных ученых-подвижниках, путешественниках и просто отважных людях, без которых были бы невозможны многие открытия в биологии. Научные названия могут многое рассказать нам как о тех, кому они посвящены, так и об их авторах – их мировоззрении, пристрастиях и слабостях.

Стивен Хёрд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Возбуждённые: таинственная история эндокринологии. Властные гормоны, которые контролируют всю нашу жизнь (и даже больше)
Возбуждённые: таинственная история эндокринологии. Властные гормоны, которые контролируют всю нашу жизнь (и даже больше)

Перепады настроения, метаболизм, поведение, сон, иммунная система, половое созревание и секс – это лишь некоторые из вещей, которые контролируются с помощью гормонов. Вооруженный дозой остроумия и любопытства, медицинский журналист Рэнди Хаттер Эпштейн отправляет нас в полное интриг путешествие по необычайно захватывающей истории этих сильнодействующих химикатов – от промозглого подвала девятнадцатого века, заполненного мозгами, до фешенебельной гормональной клиники двадцать первого века в Лос-Анджелесе. Наполненная искрометным юмором, при помощи которого освещаются важнейшие медицинские исследования, эта книга представляет ведущих ученых-эндокринологов, их блестящие открытия о гормональном дисбалансе, так часто беспокоившем нас. Это книга про шарлатанов, которые использовали передовые научные открытия в своих коварных целях – для продажи ложных лекарств и достижения личного благополучия. Эпштейн раскрывает завесу тайны, впуская читателя в непростой мир медицины с богатым набором персонажей, включая доктора 1920-х годов, пропагандирующего вазэктомию как способ повысить либидо, студентку-медика, которая открыла «гормон беременности» в 1940-х годах, и мать, которая собирала гипофизы от трупов в качестве источника гормона роста для лечения своего сына. Попутно Эпштейн исследует функции основных гормонов нашего организма, таких как лептин, окситоцин, эстроген и тестостерон, демистифицируя науку об эндокринологии, и дает нам понять важную истину – именно гормоны контролируют нас!

Рэнди Хаттер Эпштейн

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука