Имеются бактерии и другие организмы, столь малые, что они сильно подвержены этому явлению. Их движения определяются тепловыми прихотями окружающей среды; они не имеют выбора. Если они обладают собственной подвижностью, то они могут все же передвигаться с одного места на другое, но только с известными трудностями, поскольку тепловое движение швыряет их как маленькую лодку в бурном море.
Очень сходно с броуновским движением явление диффузии. Представьте себе сосуд, наполненный жидкостью, скажем водой, с небольшим количеством какого-нибудь окрашенного вещества, растворенного в ней, например марганцовокислого калия, но не в равномерной концентрации, а скорее как на рис. 4, где точки означают молекулы растворенного вещества (перманганата) и где концентрация уменьшается слева направо.
Если вы оставите эту систему в покое, наступает весьма медленный процесс "диффузии". Перманганат распространяется в направлении слева направо, то есть от места более высокой концентрации к месту более низкой концентрации, пока, наконец, не распределится равномерно по всей воде.
В этом довольно простом и, очевидно, не особенно интересном процессе замечательно то, что он ни в какой степени не связан с какой-либо тенденцией или силой, которая, как это можно было бы подумать, влечет молекулы перманганата из области большей тесноты в область меньшей тесноты, подобно тому как,например, население страны расселяется в ту часть, где больше простора. С нашими молекулами перманганата ничего подобного не происходит. Каждая из них ведет себя совершенно независимо от всех других молекул, с которыми она встречается весьма редко.
Каждая из них, как в области большей тесноты, так и в более свободной части, испытывает одну и ту же судьбу. Ее непрерывно толкают молекулы воды, и таким образом она постепенно продвигается в совершенно непредсказуемом направлении, - иногда в сторону более высокой, иногда в сторону более низкой концентрации, а иногда наискось. Характер движения, которое она выполняет, часто сравнивали с движением человека, которому завязали глаза на большой площади и который хочет "пройтись", но не придерживается определенного направления и, таким образом, непрерывно изменяет линию своего движения.
Тот факт, что беспорядочное движение молекул перманганата все же должно вызывать регулярный ток в сторону меньшей концентрации и в конце концов привести к равномерному распределению, на первый взгляд кажется озадачивающим, но только на первый взгляд. При тщательном рассмотрении на рис.4 тонких слоев почти постоянной концентрации можно представить себе, как молекулы перманганата, которые в данный момент содержатся в определенном слое, путем беспорядочных движений будут в действительности с равной вероятностью перемещаться как направо, так и налево. Но именно вследствие этого поверхность, отделяющая два соседних слоя, будет пересекаться большим количеством молекул, приходящих слева, чем в обратном направлении. Это произойдет просто потому, что слева имеется больше беспорядочно движущихся молекул, чем имеется их справа, и до тех пор, пока это так, будет происходить регулярное перемещение слева направо, пока, наконец, не наступит равномерное распределение.
Если эти соображения перевести на математический язык, то получится точный закон диффузии в форме дифференциального уравнения в частных производных
объяснением которого я не буду утруждать читателя, хотя его значение на обычном языке также достаточно просто[10]. Строгая "математическая точность" закона упоминается здесь для того, чтобы подчеркнуть, что его физическая точность должна тем не менее проверяться в каждом конкретном случае. Будучи основана на чистой случайности, справедливость закона будет только приблизительной. Если имеется, как правило, достаточно хорошее приближение, то это только благодаря огромному количеству молекул, которые участвуют в явлении. Чем меньше их количество, тем больше случайных отклонений мы должны ожидать, и при благоприятных условиях, эти отклонения действительно наблюдаются.
В. Третий пример (пределы точности измерения)