А теперь можно перейти к непостижимой тайне, с которой, казалось, мы столкнулись. Если гены состоят из белка, то, по-видимому, каждый ген должен иметь особую трехмерную, достаточно компактную структуру. Далее, жизненно важное свойство гена – способность точно копироваться из поколения в поколение, лишь изредка допуская ошибки. Мы пытались понять природу этого копировального механизма. Очевидный метод копирования чего-либо – изготовление комплементарной структуры, формы, в которой затем отливается следующая комплементарная структура, и таким образом получается точная копия оригинала. Ведь именно так, в общем, делают копии скульптур. Но тогда вставал вопрос: таким способом нетрудно скопировать
Разумеется, теперь мы знаем ответ, и все выглядит настолько самоочевидным, что в наши дни никто уже не помнит, насколько головоломной эта проблема казалась тогда. На тот случай, если вы
Так каков же ответ? Любопытным образом я додумался до верного решения еще до того, как мы с Джимом Уотсоном открыли двойную спиральную структуру ДНК. Основная мысль (не то чтобы совсем новая) заключалась в следующем: гену нужно всего-навсего расположить аминокислоты белка в правильной
Конечно, самого вопроса это допущение не разрешало. Оно просто превращало его из непосильного в посильный. Потому что все еще оставался вопрос, как сделать точную копию с одномерной последовательности. Чтобы подступиться к нему, нужно вернуться к тому, что в ту пору было известно о ДНК.
К концу сороковых наши знания о ДНК углубились в нескольких существенных отношениях. Было установлено, что молекулы ДНК все же не так уж коротки. Их точная длина оставалась неясной. Теперь мы знаем, что они казались короткими потому, что, хотя это и длинные молекулы (длинные в прямом смысле, как веревка), они легко разрываются, когда их извлекают из клетки и помещают в пробирку. Достаточно перемешать раствор ДНК, чтобы длинные молекулы распались. Их химическая природа теперь была известна лучше, и более того, тетрануклеотидная гипотеза приказала долго жить – ее похоронили великолепные исследования химика из Колумбийского университета, австрийского эмигранта Эрвина Чаргаффа. Было известно, что ДНК – тоже полимер, но с совсем другим остовом и всего четырьмя «буквами алфавита» вместо двадцати. Чаргафф показал, что ДНК разного происхождения содержит совершенно разные количества этих четырех оснований (как их назвали). Возможно, ДНК была не такой уж убогой молекулой. Она теоретически могла быть достаточно длинной и разнообразной, чтобы нести генетическую информацию.
Еще до того как я уволился из Адмиралтейства, появились кое-какие довольно неожиданные данные, указывающие, что разгадка связана с ДНК. В 1944 г. Эвери, Маклеод и Маккарти – команда исследователей Рокфеллеровского института в Нью-Йорке – опубликовали статью, в которой утверждалось, что «трансформирующий фактор» пневмококка состоит из чистой ДНК.
«Трансформирующим фактором» было вещество, полученное из штамма бактерий с гладкой оболочкой. Добавленный к родственному штамму, у которого не было такой оболочки, он «трансформировал» его, и некоторые из бактерий-реципиентов тоже приобретали гладкую оболочку. Что еще важнее, у всех потомков таких клеток была одинаковая гладкая оболочка. В статье авторы были осторожны по части интерпретации результатов, но в письме брату, ныне знаменитом, Эвери высказался более откровенно. «Что-то вроде вируса – может быть, и ген», – написал он.