Что происходит в центре галактик? Этот вопрос исследуют многие астрофизики. С. Б. Попов предоставил расчеты, проведенные в Государственном астрономическом институте им. П. К. Штернберга (г. Москва).
Активность ядер галактик является в течение последних 50 лет объектом пристального внимания. Существует три основных гипотезы о природе этой активности: сверх-массивное плазменное тело, черная дыра и плотное звездное скопление. Первая из этих гипотез сталкивается со значительными трудностями и в настоящее время не пользуется большой популярностью. По всей видимости, обе оставшиеся гипотезы верны, и активность различных типов ядер галактик связана со сверхмассивными черными дырами или со звездными скоплениями в их центрах.
Идея о том, что активность галактических ядер может объясняться существованием плотных звездных скоплений, появилась давно. Общий анализ эволюции таких скоплений был проведен еще в 70-е годы прошлого века Пиблсом, Бегельманом и Рисом, которые вообще внесли очень большой вклад в исследование галактик с активными ядрами.
Свою роль в энерговыделение могут вносить неупругие столкновения звезд и вспышки сверхновых, а также гиперновые, возникающие при пролете нейтронных звезд сквозь нормальную звезду. Выбросы вещества — это типичное проявление активности не только в мире галактик, но и в мире звезд и их систем.
При особой плотности в центре галактики образуется единый сверхмассивный объект. Если он обладает значительным вращением, то через некоторое время превращается в диск. Такие объекты называют
Считается, что модель сверхмассивной звезды имеет право на существование как предшественник сверхмассивной черной дыры. Спинары должны обладать твердотельным вращением, что связано с их магнитным полем, а также излучать много энергии в ультрафиолете, что плохо согласуется с наблюдаемым распределением энергии в спектрах активных ядер.
Наиболее популярная гипотеза — о наличии в центре галактики сверхмассивной черной дыры, но она требует объяснения активности галактик самых разных типов в рамках единой модели. Эта идея появилась в 1964 г. в работах Солпитера и Зельдовича. Переменными параметрами в основном являются параметры окружающего газа и масса черной дыры (а в большинстве случаев только масса). В ее рамках удается объяснить все наиболее существенные свойства активных ядер, включая спектр и образование струй.
Центральным объектом нашей Галактики считается объект SgrA*, совпадающий с динамическим центром Галактики. Это уникальный точечный радиоисточник с плоским спектром. Именно в нем может находиться сверхмассивная черная дыра.
SgrA* расположен в центре спиральной газовой структуры SgrAWest. Гипотеза существования сверхмассивной черной дыры с массой в центре Галактики сталкивается с рядом трудностей. В первую очередь, не наблюдается сколько-нибудь значительного жесткого излучения от объекта SgrA*, динамического центра Галактики. А ведь спрятать такого «зверя», как сверхмассивная черная дыра, очень нелегко! Аккрецируя межзвездный газ (а также звездный ветер от звездного скопления IRS 16), черная дыра должна была бы интенсивно излучать в рентгеновском диапазоне, чего не наблюдается. Кроме того, приливное воздействие такого объекта препятствовало бы звездообразованию в центральной области Галактики. А также существует труднообъяснимое в рамках гипотезы о существовании черной дыры различие в расположении скопления IRS 16 и объекта SgrA*.
Существует ряд работ по моделированию последствий вспышки звездообразования в центре Галактики. Многие проявления активности в этой области удается объяснить исходя из этой модели. То, что в центре нашей Галактики идет звездообразование, является наблюдательным фактом. Зарегистрировано большое количество крайне молодых объектов. Одним из последних сообщений на эту тему является работа американских наблюдателей, в которой сообщается об открытии звезды Вольфа — Райе на расстоянии 0,5 пк от галактического центра.
Если в районе галактического центра идет процесс звездообразования, то можно построить его модель и посмотреть, совпадают ли предсказания модели с наблюдениями.
ОПИСАНИЕ МОДЕЛИ
Большая часть звезд, как следует из наблюдений, входит в состав двойных и кратных систем, что, по-видимому, является важной особенностью процесса звездообразования. Особенно ясно необходимость учета двойных звезд в эволюционных сценариях была осознана в конце 60-х — начале 70-х, когда были открыты первые двойные рентгеновские источники и нейтронные звезды (пульсары).