Читаем Чудесная молекула полностью

Число неспаренных одиноких электронов, которые могут войти в волны-лепестки (в углероде — четыре, в азоте — три и в кислороде — два), определяет 'связывающую способность' атомов (для углерода — 4, для кислорода — 2 и для азота — 3). Большие стрелки показывают направления, в которых могут образовываться связи

 

У некоторых атомов, например атомов азота и кислорода, в одной или нескольких волнах-лепестках уже имеется готовая электронная пара; такую пару называют "изолированной", или "свободной". Поэтому способность таких атомов образовывать связи с другими атомами (знаменитое химическое понятие валентности) меньше, чем у атома углерода: кислород может образовывать лишь две связи, а азот — три.

3.8. Двойная связь

Иногда атом углерода отдает две или три свои связи какому-нибудь одному атому. В этом случае говорят о двойных или тройных связях, которые изображают на рисунке соответственно двумя или тремя черточками.

Молекула этилена (вид сверху на плоскость, в которой расположены атомы)

 

В молекуле этилена два атома углерода связаны между собой двумя связями. Поэтому у каждого из них три соседа: два атома водорода и другой атом углерода. Чтобы образовать эти три связи атом углерода использует две (из трех) волны-восьмерки и волну-шар и создает три волны-лепестка в плоскости молекулы. И еще у каждого атома углерода остается по одной нетронутой волне-восьмерке, направленной перпендикулярно плоскости молекулы. Оба атома углерода делят между собой первую удобную волну (внутреннюю), внося в нее по одному лепестку. Эту удобную волну занимает первая пара электронов. Вторая удобная волна (внешняя) образуется при взаимодействии волн-восьмерок, оставшихся нетронутыми. При этом наверху сливаются два гребня, а внизу — две впадины[2]. Новая молекулярная волна простирается, как мантия, сверху и снизу плоскости, в которой расположены атомы. Эту волну занимает вторая пара электронов. На рисунке эта пара помещена в гребень волны, но точно так же она может находиться и во впадине. Возможен и такой вариант, когда один из партнеров занимает гребень, а другой — впадину. Атомы углерода прочно связываются такой связью; расстояние между ними короче, чем между атомами, связанными простой (одинарной) связью.

Две удобные волны двойной связи (вид сбоку)

 

Двойная связь благодаря своей силе придает молекуле определенную прочность. Но в то же время — вот вам многоликость природы — она делает молекулу более реакционноспособной: оба атома углерода могут пожертвовать одну из своих двух связей, все еще сохраняя близость между собой.

4. Путешествие по горам и долинам или как реагируют молекулы?

4.1. Будничная жизнь молекулы

Как в природе (в воздухе, в море и на земле), так и в колбе химика молекула в любой момент может оказаться вовлеченной в реакцию. Контакт с другой молекулой может привести к образованию одной или двух новых молекул путем создания новых связей между атомами сталкивающихся молекул. Иногда эта встреча служит лишь источником энергии, необходимой для того, чтобы первая молекула сама перераспределила свои связи.

Молекула похожа на велосипедиста-гонщика, которому нужно преодолеть холм (образ энергии, необходимой для реакции) да, кроме того, еще и преобразиться по дороге! То же самое можно сказать и о реакции между несколькими молекулами

 

В самом деле, для того чтобы молекула вступила в реакцию, ей почти всегда нужна энергия, так же как необходима энергия для отопления дома или для приведения в движение автомобиля. Эта энергия дает возможность молекуле (или нескольким молекулам) преодолеть самый трудный участок пути ее превращения в продукты реакции. Молекула подобна велосипедисту-гонщику, который начинает свою дистанцию в долине (где молекула находится в состоянии покоя), затем с усилием поднимается на холм, преодолевает его и спускается к месту назначения.

Чтобы завершить аналогию, нужно еще представить себе, что на пути к финишу велосипедист непрерывно преображается, так что гонщик, преодолевший дистанцию, будет отличаться от стартовавшего! Ведь в результате каждой реакции происходит радикальное изменение расположения атомов и перестраивается скелет молекулы.

Химики классифицируют реакции по типам изменения атомного скелета реагирующих молекул. Но на самом деле тип и легкость протекания реакции зависят от судьбы электронных пар. Иногда электронные пары остаются в целости и сохранности, просто сама волна меняет форму. Иногда пара разрывается, и каждый из электронов-одиночек занимает свою собственную волну. А иногда из таких одиноких электронов образуется новая пара.

4.2. Зонтик, софа и ванна

В молекуле аммиака три атома водорода и свободная пара электронов занимают четыре вершины тетраэдра, в центре которого находится атом азота

 

Наиболее простыми реакциями являются те, в которых происходит изменение одной-единственной молекулы. Иногда это всего лишь мимолетное превращение, миг — и вот уже снова молекула становится прежней.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Опасная идея Дарвина: Эволюция и смысл жизни
Опасная идея Дарвина: Эволюция и смысл жизни

Теория эволюции посредством естественного отбора знакома нам со школьной скамьи и, казалось бы, может быть интересна лишь тем, кто увлекается или профессионально занимается биологией. Но, помимо очевидных успехов в объяснении разнообразия живых организмов, у этой теории есть и иные, менее очевидные, но не менее важные следствия. Один из самых известных современных философов, профессор Университета Тафтс (США) Дэниел Деннет показывает, как теория Дарвина меняет наши представления об устройстве мира и о самих себе. Принцип эволюции посредством естественного отбора позволяет объяснить все существующее, не прибегая к высшим целям и мистическим силам. Он демонстрирует рождение порядка из хаоса, смысла из бессмысленности и морали из животных инстинктов. Принцип эволюции – это новый способ мышления, позволяющий понять, как самые возвышенные феномены культуры возникли и развились исключительно в силу биологических способностей. «Опасная» идея Дарвина разрушает представление о человеческой исключительности, но взамен дает людям возможность по-настоящему познать самих себя. Книгу перевела М. Семиколенных, кандидат культурологии, научный сотрудник РХГА.

Дэниел К. Деннетт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература