Когда затухает гамма-всплеск, поймать оптическое послесвечение – это единственная возможность измерить красное смещение и светимость, которые позволяют узнать возраст объекта и оценить его массу. Несколько лет назад, находясь у 6,5-метрового Многозеркального телескопа (ММТ)[216]
обсерватории Маунт-Хопкинс в Аризоне, я получил срочное оповещение по интернету. Спутник NASA Swift зарегистрировал гамма-всплеск, и по всему миру разослали запрос на проведение спектрального анализа. Было три часа ночи, но я отодвинул в сторону чашку кофе: ничто так не бодрит, как возможность наблюдать звездный катаклизм. Через считаные минуты мы были готовы. На телемониторе ничего не было видно, поэтому мы работали вслепую, надеясь нащупать сигнал. На следующий день обработанные данные принесли нам зазубренную полосу со следами эмиссионных линий – недостаточно сильными, чтобы измерить красное смещение. На следующую ночь сигнал ослабел настолько, что уже не регистрировался. В астрономии иногда приходится довольствоваться азартом погони[217].Астрономы считают, что гамма-всплески – это визитная карточка свежеобразованных черных дыр[218]
. Тысячи изученных на данный момент событий делятся на две группы: длинные события с высокой светимостью – и короткие с низкой. Самые яркие всплески обусловлены коллапсом вращающегося ядра массивной звезды – обычно в 30 с лишним раз массивнее Солнца, – при котором формируется черная дыра. Вещество, находившееся возле ядра звезды, падает в черную дыру и закручивается в аккреционный диск. Падающий газ порождает парные джеты вдоль оси вращения, которые движутся со скоростью в 99,99 % световой и, пробив себе путь сквозь поверхность звезды, излучаются в гамма-диапазоне. Значительная часть гравитационной энергии высвобождается в форме нейтрино, а не фотонов (илл. 38). Более короткие всплески, как считается, вызваны слиянием двух нейтронных звезд или нейтронной звезды и черной дыры. В любом случае образуется одна черная дыра. Энергия слияния по большей части выделяется в форме гравитационного излучения, колебаний пространственно-временного континуума, которые распространяются вовне со скоростью света, согласно предсказанию общей теории относительности. Вещество, падающее в новоявленную черную дыру, образует аккреционный диск и дает выброс энергии.Гиперновая звезда – еще более экстремальное событие, при котором формируется черная дыра. Она выделяет в сотни или тысячи раз больше энергии, чем нормально гибнущая массивная звезда во взрыве сверхновой. Рекордсменом стал взрыв, зафиксированный в 2016 г., он был в полтриллиона раз ярче Солнца[219]
. Представьте: свет, в 20 раз более яркий, чем свет всех звезд Млечного Пути, сконцентрирован на участке пространства 16 км. Этот взрыв стал самым мощным из зарегистрированных за все время с момента Большого взрыва – умопомрачительный факт, заставляющий усомниться в любой физической теории происхождения высвобожденной при этом энергии.Подобные колоссальные взрывы вызывают неприятный вопрос: опасен ли звездный катаклизм для Земли? Иными словами, хотя нам не приходится бояться падения в черную дыру, не явится ли черная дыра к нам сама, чтобы поглотить нас? Хорошие новости: это редкие события, происходящие в каждой галактике примерно раз в миллион лет. Кроме того, излучение концентрируется в парных пучках, и взрывы ориентированы в пространстве случайным образом, так что 99,5 % из них проходят мимо нас. Это снижает среднюю повторяемость события до одного в 200 млн лет на галактику. Плохие новости: если мы случайно окажемся на «линии огня», а вспышка произойдет в пределах нескольких тысяч световых лет, Земля и ее биосфера получат удар высокоэнергетического излучения. Гамма-лучи на 75 % уничтожат озоновый слой, резко подскочит число мутаций. Трудно оценить общее воздействие на экосистему, но, по мнению одной группы ученых, позднеордовикское массовое вымирание, случившееся 450 млн лет назад, было вызвано гамма-всплеском[220]
. Данные о вымирании согласуются с разрушением озонового слоя и гибелью наземных биологических видов, однако астрономы не смогли бы обнаружить следы настолько древнего взрыва, поскольку от него осталась лишь черная дыра.Имеется еще более впечатляющее свидетельство менее разрушительного события, свершившегося уже в историческую эпоху. В 774 г. мир Запада представлял собой лоскутное одеяло из мелких воюющих государств. Карл Великий укреплял королевство, завоевывая Тоскану и Корсику, а в Японии, где буддизм быстро становился государственной религией, императрица Кокэн приказала изготовить миллион свитков со священными текстами – это одни из самых старых печатных трудов в мире. Углеродное датирование показывает, что в деревьях, из которых делали бумагу для этих свитков, замечен резкий рост соотношения углерода-14 к углероду-12.