Читаем Чума полностью

Закончив общую характеристику тинкториальных и культурально-биохимических свойств Y. pestis, остановимся на некоторых наиболее важных, с нашей точки зрения, аспектах ее биологии.

3.2. Морфологические особенности

Клетка Y. pestis построена по типу, присущему клеткам всех грамнегативных бактерий, но отличается рядом особенностей [Кац, Л. Н., 1966; Голубиниский Е. П. и др., 1971; Наумов А. В., Самойлова Л. В., 1992]. Скелет клетки, представленный трехслойной мембраной, придает клетке овоидную форму со вздутьями по бокам и закруглениями на концах. Средний слой отличается способностью интенсивно абсорбировать красители на полюсах клетки (столь типичная для чумного микроба биполярная окраска обусловливается именно этим). Структурную основу внешней мембраны клеточной стенки составляет липополисахаридно-белковый комплекс, однако у чумного микроба липополисахарид (ЛПС) подобен ЛПС R-мутантов грамотрицательных бактерий, чем, в частности, объясняются характерные особенности роста Y. pestis на искусственных питательных средах [Бахрах Е. Э.,1973; Тараненко Т. М., 1988]. На поверхности клеточной стенки при надлежащих условиях культивирования микроба выявляются пилеобразные или фимбриоподобные структуры, имеющие белковую природу [Водопьянов С. О. и др., 1985; Linder L. E. et al., 1990]

После выращивания при температуре 37 °C и в мазках из органов животных клетки окружены гликопротеидной капсулой.

3.3. Метаболизм

По типу метаболизма все иерсинии, включая чумной микроб, характеризуются как типичные представители семейства кишечных бактерий. Прежние наши возражения против подобного заключения были основаны на иных подходах к таксономии бактерий. Нам казалось, что при классификации микробов нужно исходить из экологического принципа, который учитывает все особенности, а не ограничиваться анатомо-физиологическими данными о бактериях [Домарадский И. В., 1971]. Впрочем, мы и теперь так считаем и если все же мы говорим, что Yersinia являются типичными представителями семейства Enterobacteriaceaе, то, во-первых, следуем устоявшейся традиции, а, во-вторых, хотим подчеркнуть присущую всем членам этого семейства специфику обмена веществ (и только!). Вместе с тем, мы снова подчеркиваем, что по крайней мере Y. pestis, по характеру обитания в природе, а также патогенезу и механизму передачи вызываемой в естественных условиях инфекции на «кишечные» бактерии никак не похож.

Большое значение для физиологии чумного микроба имеет гликолиз — универсальный и в тоже время филогенетически наиболее древний путь метаболизма углеводов. Об этом свидетельствуют, как данные табл. 11, так и сведения о конечных продуктах диссимиляции углеводов (табл. 12) и наличии у него соответствующих ферментов. Катаболизм других углеводов и близких к ним соединений обычно начинается с превращения в субстраты, доступные для сбраживания. Примечательно, что Y. pestis присуща способность не только к анаэробному, но и к аэробному гликолизу, энергетически более выгодному, чем первый. Не есть ли все это следствие «солидного» возраста возбудителя чумы, ставшего им еще задолго до появления человека, в мезозое, т. е на заре царства млекопитающих — единственных хозяев микроба?


Таблица 12. Диссимиляция глюкозы клетками чумного микроба, выращенными в аэробных и анаэробных условиях [Englesberg Е., Gibor Д., Levy J. et al., 1954]

Что касается окисления моносахаридов до двуокиси углерода с промежуточным образованием пентозо- и гептозофосфтов (гексозомонофосфатный путь или пентозный цикл), то его удельный вес в метаболизме чумного микроба весьма невелик, хотя, по-видимому и достаточен для обеспечения его пентозами для образования нуклеиновых кислот [Рублев Б. Д., Голубинский Е. П., 1971]. Низкую активность этого цикла связывают с отсутствием у чумного микроба глюкозо-6-фосфат дегидрогеназы, отличающее его от возбудителя псевдотуберкулёза [Mortlock R., Brubaker R., 1962].

Помимо гликолиза, источником энергии для чумного микроба является окисление глюконата по схеме Энтнера-Дудорова, что установлено R. Mortlock [1962] и подтверждено мною и моими коллегами [Рублев Б. Д. и др., 1971]. Однако как и для других аэробных микоорганизмов, основным источником энергии для чумного микроба служит цикл Кребса. При этом обращает на себя внимание то, что ему присущ даже глиоксилатный цикл, который используется в качестве источника метаболитов для синтеза углеродных скелетов углеводов, причём для этого он обладает несколькими формами изоцитрат-лиазы [Hiller S., Charnetzky W., 1981].

Перейти на страницу:

Похожие книги

Павлов И.П. Полное собрание сочинений. Том 1.
Павлов И.П. Полное собрание сочинений. Том 1.

Первое издание полного собрания сочинений И. П. Павлова, предпринятое печатанием по постановлению Совета Народных Комиссаров Союза ССР от 28 февраля 1936 г., было закончено к 100-летию со дня рождения И. П. Павлова - в 1949 г.Второе издание полного собрания сочинений И. П. Павлова, печатающиеся по постановлению Совета Министров СССР от 8 июня 1949 г., в основном содержит, как и первое, труды, опубликованные при жизни автора. Дополнительно в настоящем издание включен ряд работ по кровообращению и условным рефлексам, а также «Лекции по физиологии», не вошедшие в первое издание. Кроме того, внесены некоторые изменения в расположение материала в целях сгруппирования его по определенным проблемам с сохранением в них хронологической последовательности.Второе издание полного собрания сочинений И. П. Павлова выходит в 6 томах (8 книгах). Библиографический, именной и предметно-тематический указатели ко всему изданию. а также очерк жизни и деятельности И. Павлова составят отдельный дополнительный том.

Иван Петрович Павлов

Биология, биофизика, биохимия