Читаем Чума полностью

Синтез V-антигена кодируется геном lcrV, входящим в состав оперона lcrGVH-yopBD, расположенном на плазмиде «вирулентности» [Bergman T. et al.,1991; Perry R. D. et al., 1986;].

По данным S. Price и соавт. [1991], V-антиген является регуляторным бифункциональным белком, С одной стороны, он необходим для кальций-зависимого роста чумного микроба, а с другой — для максимальной экспрессии LCR-генов вирулентности.

Говоря о Vwa, нельзя не вернуться к другим белкам, связнным с LCR, которые также относят к белкам вирулентности иерсиний. Все они относятся к числу поверхностных белков и выполняют разные функции в патогенезе инфекций: сигнализируют микробным клеткам о наличии ионов кальция (YopN) и изменении температуры (LcrF), выполняют ферментативные и регуляторные функции (YpkA, YopH), образуют поры в соответствующих клетках-мишенях и способствуют перемещению в них других белков (YopK, YopB, YopD), дают цитотоксический эффект (YopE), нарушают агрегацию тромбоцитов (YopM) и др. [Guan K., Dixon J, 1990; Leung K. Y. et al.,1990; Bliska J. B. et al., 1991; Forsberg A. et al., 1991; Galyov E. et al., 1993; Holmstrom A, 1995]. Из числа белков, кодируемых плазмидой pCad и участвующих в LCR, у чумного микроба выявлено 11, среди которых превалируют YopM и YopN [Leung K. Y. et al., 1990]. Одна из причин, с которой может быть связан относительно небольшой набор LCR-белков у чумного микроба, рассматривается ниже.

Поскольку синтез всех LCR-белков неразрывно связан с pCad, необходимо заострить внимание на очень важном факте, который может помочь лучше понять, от чего зависят флюктуации вирулентности чумного микроба. Мы имеем в виду данные R. Zsigray и соавт. [1983,1985], показавших, что у штаммов Y. pestis, получивших F' lac, потеря вирулентности обусловливается встройкой pCad в хромосому. Встройка носит обратимый характер: pCad возвращается в автономное состояние, когда F' lac элиминируется из клеток.

3.8.3. Фракция I (капсульный антиген)

Подобно многим другим микроорганизмам чумной микроб in vivo и при определенных условиях in vitro образует капсулу или оболочку. Однако, как подчеркивал T. Burrows (1960a), по вопросу о том, идентична ли капсула, образуемая микробом в организме, капсуле, которая образуется им на искусственных питательных средах, мало что известно.

Начало интенсивному изучению капсульного вещества было положено работами. E. E Baker и соавт. [1952]. которые для её извлечения использовали водносолевой экстракт сухих клеток чумного микроба[12].

На искусственных питательных средах максимальное количество FI в форме видимой капсулы накапливается при 37 °C. При температуре 26–28 °C, оптимальной для роста чумного микроба, образование FI выражено значительно слабее.

По многочисленным данным, штаммы FI- легко селекционировать из популяции FI+ при помощи специфической антисыворотки. Такие штаммы не образуют видимой капсулы, не агглютинируются капсульной антисывороткой, не высвобождают FI после обработки их ультразвуком и не вызывают образования соответствующих антител.

Помимо явных FI+ и FI- штаммов встречается еще третий тип штаммов, обладающих свойствами как первого, так и второго типа (штаммы FI+). Штаммы FI+ не способны к образованию видимой капсулы ни на питательных средах, ни в организме животных. Однако такие штаммы способности к синтезу FI полностью не лишены, о чем можно судить с помощью реакции преципитации в геле или по индукции ими специфических антител. Два таких штамма были получены путем селекции, а один выделен от человека, умершего от чумы — штамм Bryan [Burrows T. W., Bacon, G. A., 1958].

По химической природе FI оказался белковым агрегатом с мол. массой 300 кДа, состоящим из двух компонетов с одинаковыми антигенными свойствами. Один из них, изоэлектрическая точка которого лежит при рН 4,6, соединен с олигомерным галактаном, т. е представляет собой гликопротеин, тогда как второй, с pI 4,8, является чистым белком. Оба компонента распадаются на субъединицы с мол. массами от 15 до 17 кДа [Bennet L., Tornabene T., 1974] и легко образуют исходный, высокомолекулярный комплекс. Упаковка молекулы FI происходит за счет водородных и гидрофобных взаимодействий без образования дисульфидных связей [Наумов А. В., Самойлова Л. В., 1995]. B-клеточный эпитоп, доступный для антител, выглядит как гидрофильная петля на поверхности полимерной молекулы [Zav’yalov V. et al., 1995a].

Перейти на страницу:

Похожие книги

Психология стресса
Психология стресса

Одна из самых авторитетных и знаменитых во всем мире книг по психологии и физиологии стресса. Ее автор — специалист с мировым именем, выдающийся биолог и психолог Роберт Сапольски убежден, что человеческая способность готовиться к будущему и беспокоиться о нем — это и благословение, и проклятие. Благословение — в превентивном и подготовительном поведении, а проклятие — в том, что наша склонность беспокоиться о будущем вызывает постоянный стресс.Оказывается, эволюционно люди предрасположены реагировать и избегать угрозы, как это делают зебры. Мы должны расслабляться большую часть дня и бегать как сумасшедшие только при приближении опасности.У зебры время от времени возникает острая стрессовая реакция (физические угрозы). У нас, напротив, хроническая стрессовая реакция (психологические угрозы) редко доходит до таких величин, как у зебры, зато никуда не исчезает.Зебры погибают быстро, попадая в лапы хищников. Люди умирают медленнее: от ишемической болезни сердца, рака и других болезней, возникающих из-за хронических стрессовых реакций. Но когда стресс предсказуем, а вы можете контролировать свою реакцию на него, на развитие болезней он влияет уже не так сильно.Эти и многие другие вопросы, касающиеся стресса и управления им, затронуты в замечательной книге профессора Сапольски, которая адресована специалистам психологического, педагогического, биологического и медицинского профилей, а также преподавателям и студентам соответствующих вузовских факультетов.

Борис Рувимович Мандель , Роберт Сапольски

Биология, биофизика, биохимия / Психология и психотерапия / Учебники и пособия ВУЗов