Профессор и врач Джеймс Лупски живет с болезнью ШМТ уже больше сорока лет. Считается, что в это заболевание вовлечены множественные генетические поражения, но в случае Лупски было трудно найти что-то с помощью методов, доступных в 2010 году. Поэтому профессор и команда ученых решили секвенировать его геном и геномы членов его семьи. Секвенируя три миллиарда оснований его генома, они надеялись установить генетическую основу особого вида ШМТ, который был у Лупски. У членов семьи не было проявлений этого синдрома, и поэтому была возможность найти ген, ответственный за ШМТ, используя перекрестное связывание цепочки их ДНК с ДНК Джеймса. Это было то же самое, что искать иголку в стоге сена, но Лупски и его коллеги справились с задачей: они нашли виновника – это был ген SH3TC2.
Вот как они это сделали. Каждая цепочка ДНК – это длинная линейная молекула, состоящая из четырех нуклеотидных оснований (G, A, T и C), последовательность которых образует наши гены. Расположение G, A, T и C диктует клеткам, какие именно белки надо создавать: например, белок, присутствующий в структуре нервной клетки. Генетический код указывает, что различные аминокислоты в белке кодируются в ДНК триплетами нуклеотидов. На иллюстрации, где изображена последовательность части гена SH3TC2 (рис. 8.2), я отделяю последовательность на каждом третьем основании, потому что триплеты ДНК кодируют аминокислоты в белках.
Рис. 8.2. Частичная последовательность гена SH3TC2
Следующая иллюстрация – это та часть белка, для которой кодируется ДНК (рис. 8.3). Буквы под последовательностью ДНК – это аббревиатуры, обозначающие двадцать аминокислот в белках, а цифры над ней – это позиции в белке, пронумерованные от его начала. Лупски с командой сканировал свой геном на наличие тех мест, где тот отличался от эталонной человеческой последовательности (последовательности человека без ШМТ), и идентифицировал их. Эти позиции называются однонуклеотидными полиморфизмами (SNP). Исследователи должны были просеять 3 420 306 SNP. Они быстро исключили 2 255 103 SNP, потому что те не принадлежали к области известных генов. После этого им оставалось отсортировать 1 165 204 SNP. Тогда они исключили области, которые были в генах, но не кодировали аминокислоты (такие как интроны). Это сузило поиск до 18 406 SNP – неплохо, да? Но все равно та еще работенка.
Рис. 8.3. ДНК и последовательность белка в области SH3TC2, где происходили мутации, ведущие к болезни Шарко – Мари – Тута
Учитывая то, как работает генетический код, ученые могли отсеять еще больше SNP. Генетический код избыточен: некоторые аминокислоты кодируются несколькими триплетами ДНК. Например, CCA, CCG, CCT и CCC являются кодонами аминокислоты пролина. Если SNP находится в третьей позиции кодонов, которые кодируют пролин, он не будет кодировать другую аминокислоту. Никаких изменений, никаких нарушений, никакого вреда. Такие мутации называются молчащими, потому что они не приводят к изменению аминокислоты, кодирующей их кодон. Исключив и эти случаи, ученые пришли к 9069 SNP, которые вызвали изменения аминокислот в белке генома Лупски. Затем они использовали обширные знания по генетике, накопленные за последнее столетие в базе данных мутаций генов человека (
Рис. 8.4. ДНК и последовательность белка, показывающая место локации мутантного гена SH3TC2 Джеймса Лупски (внизу)
Изменение последовательности ДНК в геноме Лупски в этих цепочках выглядит как C=>T (на кодирующей нити мутация G=>A), и это вызывает сдвиг аминокислоты от гистидина (H) к тирозину (Y). Точная функция SH3TC2 все еще неизвестна, но весьма высока вероятность того, что от него зависит образование миелинового слоя, покрывающего нервные клетки. Миелинизация действует так же, как пластиковая изоляция на проводах[34]
. Без надлежащей миелинизации передающие в мозг осязательную информацию нервные клетки в конечном итоге теряют сигнал потенциала действия на пути следования, и до мозга доходит лишь часть данных. Эти мутации и форма ШМТ уникальны и демонстрируют силу геномики на примере невропатии чувств отдельного индивида.