Читаем Чувственная, интеллектуальная и мистическая интуиция полностью

именно пусть hn стремится к нулю по мере того, как n возрастает до бесконечности. Тогда эта группа квадратов образует абстрактивный класс.


Некоторые математики предлагают пользоваться для этой диаграммы не квадратами, а кругами, чтобы уменьшение объёма со всех сторон было равномерным.


«В другом случае возьмем ряд прямоугольников, концентрических и расположенных подобно»; пусть две противоположные стороны этих прямоугольников сохраняют одну и ту же величину, а две другие уменьшаются, стремясь к нулю по мере возрастания n до бесконечности. Эта группа также образует абстрактивный класс.


Очевидно, группа квадратов, описанных в первом примере, конвергирует к точке, а группа прямоугольников – к прямой линии. «Точно так же, пользуясь трёхмерными объёмами, можно диаграмматически изобразить абстрактивные классы, конвергирующие к поверхностям» [CCLXXXII].

В понимании точки, данном Уайтхедом, нет грубо очевидного логического круга, как это может показаться, если придирчиво критиковать употребляемые им слова, напр. слово «концентрический». Ряд объёмов конвергирующих к одной точке, может быть определен не отношением их к этой точке, недоступной восприятию, а отношением членов ряда друг к другу. Таким образом, говорит Броод, здесь понятия науки определяются через доступные восприятию объекты и их воспринимаемые отношения [CCLXXXIII].


Аналогичным способом можно выработать, исследуя форму времени, понятие момента.


Сложная искусственная конструкция Уайтхеда поражает нас, людей удовлетворяющихся «гимназическим» пониманием точки, дошедшим до нас от Евклида и состоящим в том, что мы мыслим точку как нечто крайне простое, именно как то, что мы назвали термином «точка-граница». Правда, точка, так понимаемая, не наглядна, и тем не менее она стоит перед умственным взором в интеллектуальной интуиции с предельною очевидностью; именно её «внутренняя природа» (inner nature) служит основанием для понимания множества синтетических суждений, выражающих законосообразно необходимые следствия её сущности и не требующих, несмотря на свою значительность и своеобразие, никакого другого доказательства, кроме интеллектуального созерцания этой сущности. Без сомнения, сами авторы сложных конструкции, пытающиеся заменить ими простое традиционное понятие точки отправляются от традиционного смысла понятия и поверяют годность своей конструкции, сличая следствия её со следствиями традиционного понятия. Иными словами, они отлично понимают смысл понятия «точка-граница». А то обстоятельство, что точка, так понимаемая, не доступна чувственному наглядному восприятию, ничему не мешает и не подрывает бытия точки. Ведь и сами конструкции Уайтхеда, Ресселя, Броода и др. пронизаны нечувственными, не наглядными моментами, которые в случае устранения их привели бы к исчезновению и самих чувственных содержаний, а также чувственной интуиции. В самом деле, геометрические квадраты, шары и т. п. как предметы чувственного созерцания не даны; во-вторых, тем более ряды, соединения их и т. п. аспекты сложных целостей не суть предмет чувственного наглядного созерцания. Явным образом здесь перед нами предметы интеллектуальной интуиции, только символически обозначаемые реальными, чувственно данными предметами; если тем не менее мы отчётливо понимаем содержание этих сложных не наглядных предметов и усматриваем необходимые следствия, вытекающие из них, то тем более мы понимаем содержание традиционного понятия точки и необходимые следствия его. На замечание Ресселя, что точки суть фикции, Броод отвечает: нет, точки не суть фикции, они существуют, однако, правда, иначе, чем объёмы, именно «они существуют в том смысле, что они суть определенные функции реального ряда актуально существующих единичных предметов (particulars)»; мы воспринимаем посредством органов чувств, добавляет Броод, только единичные предметы, а точки, линии и т. п. суть не единичные предметы, но «логические суммы классов» (logical sums of classes, 51).


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже