Читаем Чувственная, интеллектуальная и мистическая интуиция полностью

Таким образом, остаётся лишь следующее существенное отличие основ геометрии Гильберта и" основ традиционной евклидовской геометрии. Традиционная геометрия начинает с интеллектуального созерцания точек, прямых, плоскостей как предметов, имеющих определённую природу, из которой следует, что между ними существуют отношения, выразимые такими аксиомами, как: «две отличные друг от друга точки А и В определяют прямую а» или «если А и С суть две точки прямой, то всегда существует по крайней мере одна точка В, лежащая между А и С» и т, д. Наоборот, геометрия Гильберта исходит их этих отношений и условливается изучать те предметы x1 x2 х3, которые связаны этими отношениями, независимо от того, какова внутренняя природа предметов. Отсюда, как уже сказано, получается большая общность его системы геометрии, но вовсе не полное освобождение от идеальных данных усматриваемых путём интеллектуальной интуиции: такие данные его геометрии суть выбранные им для наблюдения основные отношения образующие порядок, законосообразности которого, открываемые путём умозаключения из основных аксиом, составляют целую науку.


Рассматривая теории арифметики, может быть, ещё легче окончательно отдать себе отчёт в том, что все, даже и первые шаги математики начинается с рассмотрения идеального аспекта реальных предметов и ни один математический элемент никогда и нигде не «существует» реально.

Так, напр., современная математика выработала «точную аналитическую» теорию дробей, согласно которой дробь рассматривается как пара целых чисел. Среди оснований, побуждающих к этой теории, приводится следующее соображение: научная теория не может допускать существования вещи, «эмпирически» не данной; дроби (1/2, 3/4, и т. п.) эмпирически не даны, а единицы и вообще целые числа даны эмпирически; поэтому учение о дробях может удовлетворить строгим требованиям научности не иначе как, путём сведения дробей на отношения целых чисел.


С точки зрения гносеологии это рассуждение содержит в себе сочетание чрезвычайной логической щепетильности, с одной стороны, и грубого некритического эмпиризма, с другой стороны. В самом деле, не только дроби, но и математические единицы не даны «эмпирически» в том смысле, в каком даны палки, яблоки, зерна: математическая единица есть идеальный аспект предмета, данный не иначе как в интеллектуальной интуиции, т. е. только мыслимый, но не воспринимаемый чувственно и не наглядный [CCLXXXVII].


В той же интеллектуальной интуиции даны также и формы, мыслимые в понятиях дробей – 1/2, 3/4, и т. п. Никакого преимущества в смысле эмпирической данности одних из этих предметов перед другими: нет. Если обозначить словом «эмпирическая данность» также и данность идеальных, аспектов бытия в интеллектуальной интуиции, то и единицы, и дроби даны эмпирически. К тому же и те, и другие суть столь необходимые идеальные аспекты реальных предметов, что даже чувственное восприятие предметов стало бы невозможным, если бы выдернуть из них эти формы, точно так же как чувственное восприятие высокой ели, имеющей конусообразную форму, было бы невозможно без таких элементов её формы, как вертикальная линия, точка вершины и основания этой линии и т. п. (см. выше стр. 234).


Отказываясь брать исходным пунктом своих умозаключений идеальные данности, напр. точку границу, евклидовскую прямую и непосредственно усматриваемые аксиоматические положения, вытекающие из их природы, современный математик ссылается на то, что такие аксиомы не раз уже в истории науки оказывались ненадежными. Примером может служить пятый постулат Евклида, освобождение от которого привело к открытию неевклидовской геометрии.


В ответ на это следует заметить, что непосредственное усмотрение очевидных законосообразностей идеальных предметов никогда не бывает ошибочным, но, правда, легко может оказаться содержащим в себе тот недостаток, который можно назвать недоразвитостью знания. Он состоит в том, что в субъекте суждения (на известной ступени развития) остаются неопознанными некоторые элементы, необходимые для обоснования предиката или же, наоборот, в субъект включены элементы излишние и не опознано, что они не необходимы. Так, в пятом постулате Евклида не было опознано, что он имеет силу для пространства с постоянною кривизною, равною нулю. Однако и не внося в постулат этого ограничения, те лица, которые мыслили его, имея в виду евклидовское пространство, нисколько не заблуждались. Только тогда, когда лицо мыслящее этот постулат, придает ему слишком широкий объём, напр. когда противники Лобачевского или Болиаи воображали, что пятый постулат имеет силу для всякого пространства, они заблуждались [CCLXXXVIII].

12. Состав общих материальных идей

Рассмотрев состав формальных общих идей, необходимо вслед за этим дать также отчёт о составе материальных общих идей. Здесь возникают ещё большие трудности. Прежде всего смущает то, что идеи невременны, а соответствующие им события суть нечто временное.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже