Здесь указана цель – снижение затрат на электроэнергию, что помогает AI сфокусироваться на экономическом аспекте вопроса и привести примеры, связанные с домохозяйствами.
Как улучшить: Всегда указывайте, что именно вы хотите получить от модели. Это может быть объяснение, анализ, примеры, или даже конкретные рекомендации.
2. Фокусировка на ключевых аспектах
Когда тема широкая, важно сузить запрос до конкретных аспектов, которые вас интересуют. Это помогает модели сфокусироваться на одной части информации и не уходить в сторону.
Пример без фокусировки: “Расскажи о блокчейне.”
Такой запрос слишком общий, и модель может ответить как про его устройство, так и про историю или различные области применения, не предоставив достаточной информации по нужному аспекту.
Пример с фокусировкой: “Расскажи, как блокчейн используется для обеспечения безопасности транзакций в финансовых системах.”
Этот запрос сфокусирован на одном конкретном аспекте – безопасности транзакций, что даёт модели возможность предоставить более релевантную информацию.
Как улучшить: Сужайте тему, указывая ключевые аспекты, которые вас интересуют. Это могут быть отдельные технологии, примеры их применения или конкретные преимущества.
3. Примеры как часть запроса
Когда вы хотите получить определённый формат или стиль ответа, предоставление примеров в самом запросе может быть чрезвычайно полезным. Это помогает AI лучше понять, что именно вам нужно.
Пример без примера в запросе: “Напиши рекламный текст для нового смартфона.”
Модель может создать любой текст, от технического до эмоционального, в зависимости от своей интерпретации запроса.
Пример с примером в запросе: “Напиши рекламный текст для нового смартфона, подобный тому, как рекламируются продукты Apple – с акцентом на инновации и премиум-класс.”
Теперь модель имеет чёткий ориентир на стиль и акценты, что повышает шансы на получение текста, соответствующего вашему ожиданию.
Как улучшить: Если у вас есть конкретное представление о том, как должен выглядеть ответ, предоставьте примеры или укажите стиль, который нужно использовать.
4. Указание на целевую аудиторию
AI может адаптировать ответы в зависимости от того, кто является целевой аудиторией. Это особенно важно, когда нужно, чтобы текст или информация были соответствующими уровню понимания или интересов аудитории.
Пример без указания аудитории: “Объясни, как работают нейронные сети.”
Ответ может быть слишком техническим или, наоборот, слишком простым, если не указать, кому именно нужно объяснение.
Пример с указанием аудитории: “Объясни, как работают нейронные сети, для студентов, которые только начинают изучать машинное обучение.”
Теперь AI сможет адаптировать ответ под уровень знаний студентов, предоставив объяснение в понятной и доступной форме.
Как улучшить: Всегда указывайте, для кого предназначен ответ – это может быть начинающая аудитория, эксперты в своей области, или специфическая группа людей, что поможет AI выбрать правильный уровень детализации и стиль.
5. Указание на нужную глубину ответа
Некоторые задачи требуют кратких ответов, другие – глубокой детализации. Чтобы AI предоставил нужный по объёму и глубине ответ, важно указать, насколько развернутым должен быть результат.
Пример без указания глубины: “Объясни машинное обучение.”
Ответ может быть как очень кратким, так и излишне сложным, если не указать, насколько глубокий анализ вам нужен.
Пример с указанием глубины: “Объясни основы машинного обучения, уделяя внимание его основным методам, но без глубокого погружения в математические модели.”
Такой запрос указывает на нужную глубину анализа, позволяя AI сосредоточиться на общем объяснении без углубления в технические детали.
Как улучшить: Указывайте, насколько детализированный ответ вам нужен. Это может быть краткое резюме или наоборот, подробное исследование с примерами.
6. Использование контекста
Если запрос основан на ранее полученной информации или нужно учитывать предыдущие обсуждения, важно добавить этот контекст. Это помогает AI продолжить развивать тему, не начиная с нуля.
Пример без контекста: “Какие последние достижения в квантовых вычислениях?”
Этот запрос может привести к ответу, который будет слишком широким, если не добавить конкретики.
Пример с контекстом: “На основе предыдущего обсуждения о квантовых вычислениях, расскажи о последних достижениях в области создания более стабильных кубитов.”
Здесь контекст указывает на то, что AI должен основываться на предыдущем диалоге и продолжать тему, что делает ответ более сфокусированным.
Как улучшить: Если у вас был предыдущий разговор с AI или модель предоставила информацию, которую нужно дополнить, всегда добавляйте этот контекст в новые запросы.
7. Разделение сложных вопросов на несколько шагов
Если запрос слишком сложный или включает несколько аспектов, имеет смысл разделить его на несколько частей. Это помогает AI сфокусироваться на одном вопросе за раз и дать более точный ответ на каждый из них.