Более надежное направление исследований было продемонстрировано много лет спустя, в июне 1976 г., на конференции нейрохирургов во Флориде. Там другой советский ученый, Левон Матинян, показал фильм о крысах, которые вновь достигли значительной свободы движений после того, как их спинной мозг был перерезан. Животные получили инъекции ферментов. По словам Матиняна, у выздоровевших крыс полностью восстановилась подвижность задних ног в течение двух-восьми месяцев. И хотя некоторые американские ученые все еще недоверчиво отнеслись к научной методике советских исследователей, кажется, широко распространенное мнение о том, что нервная система не способна к регенерации, придется пересмотреть. Перед учеными открываются поразительные перспективы. Быть может пройдут годы, прежде чем новые знания найдут практическое применение, но в конечном итоге регенерация нервных элементов придет на помощь людям с параличом нижних конечностей, жертвам инсульта и всем тем, кто страдает от травм головного или спинного мозга.
Чтобы произошла эффективная регенерация, нейроны, прежде связанные между собой, а теперь разорванные, должны сохраняться живыми — воссоздать погибшие клетки невозможно. Нейрон должен вырастить аксон — отросток, проводящий импульсы, — достаточно длинный, чтобы связаться с соседним нейроном. Он не должен расти в другом направлении или натыкаться на шрам.
Советские ученые применяли ферментотерапию и на людях с повреждениями спинного мозга, и, хотя нам неизвестны детали и статистические данные об успешности лечения, они утверждают, что добились "положительного эффекта". Ферменты (применяется комбинация двух из них — трипсина и гиалуронидазы) предотвращают образование шрамовой ткани, которая может помешать росту нервного волокна, а также расщепляют мертвую нервную ткань и таким образом поставляют новый клеточный материал для роста нервных тканей. Как утверждают советские специалисты, ферменты оказываются наиболее эффективными, если ввести их сразу же после несчастного случая; если же повреждения слишком велики, то они вообще не оказывают никакого действия.
Как мы уже говорили, главная сложность при пересадке органов заключается в том, что организм реципиента отторгает орган донора.
Обычно отторжение трансплантата происходит в несколько этапов. Самая большая опасность подстерегает больного сразу же после операции, затем наступает временное затишье, но через несколько месяцев иммунная система может перейти в активное наступление на пересаженный орган. Первая атака обычно происходит в первые послеоперационные дни в самое опасное время, когда больной еще не оправился от операционной травмы и от последствий болезни, которая вызвала необходимость пересадки. Если больному удается выжить после первого приступа, он может выписаться из больницы и жить относительно нормальной жизнью до второго приступа. Рано или поздно пересаженный орган вновь подверг гнется массированной атаке со стороны иммунной системы и, возможно, перестанет функционировать. В результате больной, ослабленный потерей жизненно важных функций пересаженного органа, скорее всего погибнет.
Таков естественный ход послеоперационных событий в тех случаях, когда не делается попыток предотвратить отторжение. Но уже с первых экспериментов по пересадке органов ученые и хирурги поняли, что для успешного проведения операции необходимо каким-то образом подавить реакцию иммунной системы. Чтобы понять, как они решили эту проблему, необходимо познакомиться с работой иммунной системы.
Иммунная система — это группа органов и клеток, предназначенных для борьбы с болезнетворными бактериями, вирусами, раковыми опухолями, а также для отторжения чужеродных тканей, в том числе трансплантированных. Главный механизм иммунной системы заключается в способности распознавания чужеродных белков. Белки представляют собой длинные, свернутые цепочки аминокислот (рис. 2), которые служат основным строительным материалом нашего организма; белки управляют большинством химических реакций внутри клетки. Тело человека — кожа, волосы, мышцы, ногти, внутренние органы — в основном состоит из белков. Инструкции, или "матрицы", по которым клетки синтезируют все эти разнородные белки, необходимые для нормального роста и возобновления клеток, хранятся в ядре каждой клетки. Информационные матрицы представляют собой цепи молекул ДНК (дезоксирибонуклеиновой кислоты, см. рис. 3). Заложенная в молекуле ДНК и унаследованная нами от родителей информация диктует, какого рода белки будут синтезированы нашими клетками.
Рис. 2
.