Пожалуй, примером таких живых существ могут служить глины, образующие ил на дне морей. Эти глины представляют собой крошечные гибкие планки в несколько микронов шириной и несколько нанометров толщиной. Планки, в свою очередь, представляют собой пачки, состоящие, вероятно, из трех или четырех слоев, структура которых напоминает слюду. Как правило, эти планки крепятся к песчинкам (в том числе к зернам нефтеносных песчаников) на дне моря [14]. По–видимому, кристаллики ила растут благодаря расширению планок исключительно за счет атомов, прикрепляющихся к их краям. Таким образом, планки сохраняют постоянную толщину. Как правило, имеется три или четыре слюдоподобных слоя. Таким образом, толщина планки является воспроизводимой чертой, хотя она может и варьировать благодаря случайностям роста. Можно спросить: имеет ли толщина в три–четыре слоя какое‑то селективное преимущество? Возможно. Ил растет благодаря «питательным» растворам, циркулирующим в порах песчаника. Слишком разросшиеся кристаллы могут загородить собой поры и снизить или остановить приток питательных веществ. Они не смогут расти и распространяться дальше. Слишком тонкие и хрупкие кристаллы легко сломать или оторвать от песчинок, к которым они прикрепляются: в этом случае они тоже закупорят поры, расположенные ниже по течению. (Именно это случается иногда, когда при добыче нефти из слоя песчаника прилагается слишком большое давление.) Возможно, толщина в три–четыре слоя идеальна для сохранения притока питательных веществ!
Разумеется, речь идет о
Следующим шагом может стать сосуществование и сотрудничество различных материалов, воспроизводящих различные полезные для выживания черты («функции»):
[g1 —> f1
; g2—> f2; g3 —> f3; и так далее]Я не буду пытаться описать различные ранние функции (подробное рассмотрение этого вопроса можно найти в [3]), отмечу только, что для генов минеральных кристаллов эти функции могли включать в себя манипуляции с локально возникающими органическими молекулами. Сейчас существует значительная литература по активности глины и других подобных минералов в адсорбировании органических молекул определенным образом — расположении их между слоями минерала или по его краям, а также в катализации органических химических реакций[43]
. Есть причины считать, что эти действия функциональны в описанном выше смысле — способствуют выживанию и распространению: «гену глины» разумно окружить себя органическими молекулами, которые будут способствовать его росту или же тем или иным способом защитят его, если внешние условия (например, рН) изменятся к худшему. Известно, что органические кислоты, например лимонная кислота, активно способствуют кристаллизации глинистых минералов, перенося нерастворимые иными путями катионы, например алюминия [19].Следующим шагом эволюции могут стать многофункциональные генетические материалы:
[…Gx
—>fn, fn+1 и т. д.]Со временем синтез органических молекул в хорошо организованном минерально–генетическом ансамбле мог принять постоянный характер, что сделало возможным воспроизведение органических полимеров. Так появился на свет новый многофункциональный генетический материал — РНК–подобный полимер, способный воспроизводить сложную и дифференцированную информацию.
Так мы переходим к истории «мира РНК» [10, 9]. Gx
(РНК) начинает действовать косвенно, контролируя синтез других молекул, неспособных воспроизводиться самостоятельно, но создающих микромеханизмы (Y = белок):Так возникает многофункциональная, косвенно действующая генетическая система (Gx
= ДНК), после чего отбрасываются ненужные минеральные «леса».Это «жизнь, какой мы ее знаем». Структурные и каталитические функции fn
, fп+1 и т. д. выполняются РНК напрямую: fp, fp+1 и бесчисленное множество других функций выполняется тысячами видов белков, каждый со своей особой структурой и уникальной последовательностью аминокислот, в свою очередь, контролируемой последовательностью ДНК, из которой он произошел. Это удивительно сложная система, но с точки зрения теории эволюции вполне объяснимая.7.4. Кандидаты на роль кристаллических генов