Читаем Дао физики полностью

Точная математическая формула этой взаимосвязи между неопределенностями положения и моментом частицы известна как гейзенбергская неопределенность отношения, или принцип неопределенности. Итак, в субатомном мире мы не можем располагать точными сведениями о местонахождении и импульсе любой частицы. Чем лучше нам известен импульс, тем расплывчивей оказывается местонахождение, и наоборот. Мы можем с точностью измерить одну из величин, но при этом вторая для нас остается полной загадкой. Как я уже говорил в предыдущей главе, важно понять, что это ограничение вызвано не несовершенством измерительных приборов, а является принципом. Если мы пытаемся определить точное местонахождение частицы, она просто не имеет четкого определения импульса, и наоборот.

Соотношения между неопределенностями местонахождения и импульсами частицы — не единственное проявление принципа неопределенности. Похожие соотношения существуют между другими величинами — например, между временем, в течение которого происходит атомное явление, и количеством энергии, принимающим в нем участие. Это становится вполне очевидным. когда мы начинаем рассматривать наш волновой пакет не как паттерны в пространстве, а как колебательный паттерн во времени. Когда некоторая частица проходит мимо некоторой точки наблюдения, колебания паттерна волны начинаются в этой точке с небольшой амплитудой, которая сначала увеличивается, затем начинает уменьшаться до полного прекращения колебаний. Время, которое необходимо для прохождения этого паттерна, соответствует тому промежутку времени, в течение которого частица проходит мимо нашей точки наблюдения. Мы можем сказать, что прохождение было в этот отрезок времени, но мы не можем локализовать его более точно. Поэтому продолжительность колебаний соответствует неопределенности положения события во времени.

Теперь, подобно тому, как пространственный паттерн волнового пакета не имеет определенной длины волны, соответствующий колебательный паттерн во времени не имеет определенной частоты. Прирост частоты зависит от протяженности колебательного паттерна, а поскольку квантовая теория связывает частоту волны с энергией частицы, то прирост частоты колебаний паттерна соответствует неопределенности энергии частицы. Поэтому неопределенность положения события во времени оказывается связанной с неопределенностью энергии, точно так же, как неопределенность пространственного положения частицы обнаруживает связь с неопределенностью ее импульса. Это означает, что мы не можем с одинаковой точностью определить, когда произойдет то или иное событие, и какое количество энергии будет при этом задействовано. Явления, происходящие за короткий период времени, характеризуются значительной неопределенностью энергии, а явления, в которых принимает участие четко определенное количество энергии, могут быть локализованы только внутри продолжительных промежутков времени.

Фундаментальное значение принципа неопределенности заключается в том, что он описывает ограниченность наших классических представлений в точной математической форме. Как говорилось выше, субатомный мир предстает перед учеными в виде сути взаимоотношений между различными частями единого целого. Представления классической физики, почерпнутые ею в макроскопическом окружении человека, не могут адекватно описать этот мир. Начнем с того, что понятие самостоятельной физической сущности — такой, как, скажем, частица, носит абстрактный характер и не имеет реального содержания. Оно может быть определено только в терминах его связи с целым, а эти связи характеризуются статической природой. Эти связи могут существовать с определенной вероятностью, а могут и не существовать. Если мы попытаемся описать свойства такой единицы в терминах классических понятий — таких, как местонахождение, энергия, импульс и т. д., — мы обнаружим, что существуют пары взаимосвязанных понятий, которые не могут быть одновременно определены с одинаково высокой точностью. Чем больше мы стараемся примерить какое-либо понятие к физическому «объекту», тем более неопределенным становится другое понятие, а точное соотношение между двумя этими понятиями отражает принцип неопределенности. («Отсутствие частиц» — к примеру между ядром и орбитами электронов — это не пустота. Это наложение многих волн вероятности, дающих в сумме близкое к 0 значение. Нуль получается не как «отсутствие», а как «сумма присутствия многих» — А.Б.)

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика