Читаем Дао физики полностью

В результате наш нейтрон оказывается звеном в огромной сети взаимодействий, сети «переплетения событий», если говорить языком S-матрицы. Взаимодействия внутри такой сети не могут быть определены со стопроцентной точностью. Им можно приписать только вероятностные характеристики. Для каждой реакции характерна та или иная вероятность, зависящая от запаса энергии и других параметров реакции, и все эти вероятности определяются различными элементами S-матрицы. При этом мы можем дать в высшей степени динамическое описание структуры адрона (см. рис. 54). В этом новом контексте нейтрон из нашей сети может рассматриваться в качестве «связанного состояния» протона и п-, из которых он образовался, а также в качестве связанного состояния S— и К-, которые образуются в результате его распада. Каждое из этих двух сочетаний адронов, как, впрочем, и многие другие, может преобразоваться в нейтрон, а следовательно, они могут быть названы компонентами его «структуры». Тем не менее, структура адрона понимается в данном случае не в качестве некоего соединения составных частей, а в качестве соотношения вероятностей участия различных частиц в образовании того или иного адрона. При таком подходе протон потенциально присутствует внутри пары нейтрон-пион, каон-ламбда и т. д. Помимо этого, протон обладает потенциальной способностью распадаться на каждое из этих сочетаний при наличии достаточного количества энергии. Склонность адрона к существованию в различных проявлениях определяется вероятностями соответствующих реакций, каждая из которых может рассматриваться в качестве одного из аспектов внутренней структуры адрона.

Понимая под структурой адрона его склонность подвергаться различным реакциям, теория S-матрицы придает понятию структуры динамический характер. Такая трактовка структуры прекрасно соотносится с экспериментальными данными. Участвуя в высокоэнергетических столкновениях, адроны всегда распадаются на другие адроны, и поэтому мы можем утверждать, что они потенциально «состоят» из этих сочетаний адронов. Каждая из образующихся при этом частиц будет подвергаться дальнейшим преобразованиям, соединяя, таким образом, наш исходный адрон с целой сетью событий, которую можно запечатлеть внутри пузырьковой камеры при помощи фотоаппарата. Примеры таких сетей реагирования изображены на рисунках в главе 15 и на рис. 55.

Хотя проявление той или иной сети во время конкретного эксперимента определяется одной лишь случайностью, каждая сеть обладает вполне предсказуемой структурой. Причина — в действии уже упоминавшихся законов сохранения, согласно которым могут происходить только такие реакции, в которых сохраняется неизменным определенный набор квантовых чисел. Прежде всего, константой должно быть суммарное количество энергии. Это означает, что в ходе реакции могут возникать только те частицы, для образования массы которых окажется достаточным имеющийся запас энергии. Далее, возникшие частицы должны в совокупности обладать тем же квантовыми числами, что и первоначальные частицы. Возьмем, к примеру, взаимодействие протона и пи-. Суммарный электрический заряд этих частиц равен нулю. В результате их столкновения могут образоваться нейтрон и пи-0 но не нейтрон и пи+, так как суммарный электрический заряд второго сочетания равен +1.

Следовательно, адронные реакции представляют собой поток энергии, в котором возникают и исчезают частицы, но эта энергия может «течь» только по некоторым определенным «каналам», характеристиками которого и являются квантовые числа, сохраняющиеся во время сильных взаимодействий в качестве констант.

В теории S-матрицы понятие канала реакции имеет более фундаментальное значение, чем понятие частицы. Оно определяется как набор квантовых чисел, присущий различным адронным сочетаниям, а нередко — и отдельным адронам. Какое именно сочетание пройдет через тот или иной канал, определяется вероятностью и зависит, в первую очередь, от имеющегося количества энергии. График на рис. 56 соответствует взаимодействию между протоном и п-, на промежуточной стадии которого образуется нейтрон. Таким образом, канал реакции состоит сначала из двух адронов, потом — из одного, а в конце концов — снова из первоначальной пары адронов. При наличии большого количества энергии тот же самый канал мог бы состоять из пар Л-К, 2-К и т. д.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика