Сложная последовательность рождения и распада частиц выглядит так (рис. 40): отрицательно заряженный пион (π—) проникает в пузырьковую камеру слева, сталкивается с протоном, т. е. ядром атома водорода, который уже находился внутри камеры; обе частицы разрушаются, в результате чего образуется нейтрон (n) и два каона (К— и К+); нейтрон улетает, не оставляя следа; каон К— сталкивается с другим находящимся в камере протоном, обе частицы аннигилируются, образуя лямбду (Λ) и фотон (γ). Ни одна из вновь образованных частиц не является видимой, но лямбда (Λ) через короткое время распадается на протон (р) и пион (π—), каждый из которых оставляет видимый след. На рисунке хорошо видно небольшое расстояние между возникновением лямбды и ее распадом. Наконец, каон К+, возникший при самом первом столкновении, некоторое время продолжает двигаться, а потом распадается на три пиона.
Рис. 40. Пояснение к рисунку выше
Особенно поразительно в этой последовательности то, что безмассовый, но наделенный большим количеством энергии фотон, который никак не обнаруживает своего присутствия в пузырьковой камере, внезапно взрывается, образуя пару заряженных частиц (позитрон и электрон), которые тут же начинают двигаться по расходящимся дугам. На рисунке 41 запечатлен процесс, в котором образование пары противоположно заряженных частиц из электрически нейтрального фотона происходит дважды.
Рис. 41. Последовательность событий, приводящих к образованию двухэлектронно-позитронных пар: каон К— распадается на пион π— и два фотона (γ), каждый из которых создает электронно-позитронную пару, при этом позитроны (е+) отлетают вправо, электроны (е—) — влево
Чем значительнее энергия изначального столкновения, тем больше частиц может образоваться. На рисунке 42 показано столкновение между антипротоном и протоном, в результате которого возникает восемь пионов.
Рис. 42. Создание восьми пионов после столкновения между антипротоном (
А рисунок 43 показывает экстремальный случай: образование сразу 16 частиц после одного столкновения пиона и протона.
Рис. 43. Возникновение 16 частиц в процессе столкновения пиона с протоном
Все столкновения были воспроизведены искусственно в лабораторных условиях с использованием мощных ускорителей, где частицы разгонялись до высоких скоростей и им сообщалось большое количество энергии. В большинстве случаев в природных условиях на Земле невозможно создать такие энергетические потоки, которых достаточно для образования тяжелых частиц. В открытом космосе ситуация иная. В центре звезд сосредоточены крупные скопления субатомных частиц, между которыми постоянно происходят естественные столкновения, аналогичные столкновениям внутри современных ускорителей. В некоторых звездах эти процессы рождают очень мощное электромагнитное излучение, которое может принимать форму радиоволн, световых волн и рентгеновских лучей. Для астрономов это излучение — основной источник информации о Вселенной. Межзвездное, как и межгалактическое, пространство оказывается насыщенным электромагнитными излучениями разных частот, т. е. фотонными потоками с различной энергией. Но фотоны — не единственные частицы, которые постоянно бороздят просторы космоса. «Космическая радиация» состоит не только из фотонов, но и из тяжелых частиц, механизм образования которых до сих пор остается тайной. Большинство этих частиц составляют протоны; некоторые обладают очень большой энергией, намного превышающей ту, что сообщается им самыми мощными ускорителями.
Попадая в атмосферу Земли, эти обладающие большой энергией «космические лучи» сталкиваются с ядрами атомов, составляющих молекулы атмосферы, образуя множество вторичных частиц, которые либо распадаются, либо вступают в дальнейшие столкновения, рождая новые частицы, которые вновь сталкиваются и распадаются, пока последние из них не достигнут Земли. Так, один-единственный протон, попавший в атмосферу Земли, может породить каскад явлений, в ходе которых его исходная кинетическая энергия превратится в дождь разнообразных частиц и будет постепенно поглощаться по мере продвижения этих частиц к поверхности Земли. То же явление, которое мы можем наблюдать в физике высоких энергий в ходе экспериментов по сталкиванию частиц, происходит в атмосфере нашей планеты естественным путем. Причем в последнем случае его протекание характеризуется гораздо большей интенсивностью. Непрерывный поток энергии претерпевает на своем пути к Земле много изменений, частицы непрерывно возникают и исчезают в ритмичном танце творения и разрушения. На рисунке 44 представлено величественное изображение такого полного энергии танца, которое было зафиксировано случайно, когда дождь из космических лучей попал в пузырьковую камеру, которая участвовала в эксперименте, проводившемся в Европейском исследовательском центре ЦЕРН[217].