Отсюда видно, что отбор исходит из интересов всей популяции и как бы равнодушен к судьбам отдельных особей. В результате вырабатывается механизм, при котором гомозиготы SS гибнут (в данном случае до миллиона детей ежегодно), но в целом популяция приспособлена к среде, где важным фактором является возбудитель малярии, из-за мутации, летальной для значительной ее части[10]
.Кроме того, разные мутации по-разному изменяют фенотип. Сравним мутацию — с ампутацией: ампутация головы летальна, ампутация конечности понижает жизнеспособности организма. Но ведь возможны ампутация пальца, мозоли, злокачественной опухоли; они могут быть не только нейтральными, но и полезными.
В классической генетике чаще всего использовались для анализа мутации, довольно резко изменяющие строение фенотипа. Такие изменения генома действительно существенно снижали жизнеспособность фенотипа — вплоть до нуля. Анализ аминокислотных замен в белках открыл перед генетиками всю широту мутационных изменений. Прежде всего вырожденность кода приводит к тому, что далеко не каждая мутация изменяет аминокислотную последовательность. Если же замена произошла, например, не в функциональной части молекулы фермента и не изменила существенно ее структуры, свойства белка меняются очень незначительно. Эти-то ничтожные изменения, приводящие к сдвигу оптимальной зоны действия фермента, снижению или повышению его активности, большей или меньшей избирательности субстрата, и являются основным материалом для эволюционного процесса. Так по-новому осмысливается положение Дарвина: «Природа не делает скачков». Хотя каждая мутация — скачкообразное, качественное изменение генома (нуклеотид в триплете может быть либо тем, либо другим — середины нет), подавляющее большинство этих скачков лишь незначительно изменяют фенотип и создается неверное представление о постепенных количественных изменениях. Причина слабого воздействия большинства мутаций на фенотип — сохранение при мутации полярности аминокислот.
Аминокислоты, входящие в состав белков, различаются по химическим свойствам на полярные и неполярные. Полярные аминокислоты обладают группами с резко выраженным сродством к молекулам воды, они как бы смачиваются ею. Неполярные, наоборот, слипаются друг с другом. Поэтому произошедшая в результате мутации замена полярной аминокислоты на неполярную (и наоборот) резко изменяет всю конфигурацию белковой молекулы, ее вторичную структуру. Такие мутации часто бывают летальными (в гене S и произошла подобная замена полярной глутаминовой кислоты на неполярный валин). Однако, как показывают расчеты, генетический код построен так, что точковая мутация в большинстве случаев не изменяет полярности аминокислоты. Поэтому конфигурация белковой молекулы меняется не так значительно. В настоящее время большинство исследователей полагает, что на одну крупную мутацию, существенно изменяющую фенотип, а потому, возможно, летальную, приходятся сотни, а то и тысячи для нас практически незаметных. Мы можем их обнаружить, лишь определив аминокислотную последовательность в белке мутантной формы.
У ряда исследователей сложилось впечатление, что эволюция идет путем накопления безразличных (нейтральных, неприспособительных) замен белков в аминокислотах (так называемая «недарвиновская эволюция»). Нетрудно заметить, что ошибка эта довольно стара и представляет не что иное, как перенос идей Райта о нейтральных признаках на молекулярный уровень. Коэффициент отбора для таких аллелей может быть ничтожно мал; тогда адаптивность мутации может стать очевидной лишь через сотни поколений. Мы не способны ее заметить, как не замечаем течение ледника. И опять возникает вопрос — ведь так можно объяснить дивергенцию, обособление видов, но как в процессе эволюции без отбора может возникнуть целесообразность?
Молекулярная биология не только необычайно расширила наши знания о природе генов и мутаций, но и пролила свет на природу неядерной (цитоплазматической) наследственности. Существование в цитоплазме клеток каких-либо внеядерных факторов, влияющих на признаки организмов, ламаркистами считалось (и считается до сих пор) одним из самых важных доводов против дарвинизма. Я, впрочем, никогда не мог оценить силы подобного довода. В самом деле: есть гены, локализованные в хромосомах ядра, и есть гены цитоплазматические, рассеянные в цитоплазме клетки. Чем это может помочь гипотезе о наследовании приобретаемых свойств? Даже классическую, домолекулярную генетику существование этого факта опровергнуть не может — сами генетики (К. Корренс — один из первооткрывателей менделизма и Э. Бауэр) открыли явление цитоплазматической наследственности и основательно его изучали.