Если вы загуглите «как стать специалистом Data Science», перед вами, скорее всего, появится обширный список, содержащий навыки от статистического моделирования до программирования на Python, а также информация об эффективном общении и проведении презентаций. В одной вакансии может описываться роль, схожая с ролью специалиста по статистике, в то время как другой работодатель ищет кого-то с дипломом магистра информатики. Интернет вам предложит различные варианты приобретения нужных навыков – от возвращения в университет на магистерскую программу до прохождения учебного курса или практики анализа данных на текущем месте работы. В совокупности все эти способы могут показаться непреодолимыми, особенно для тех, кто еще до конца даже не определился с решением стать дата-сайентистом.
Для вас есть хорошая новость: не существует ни одного специалиста по Data Science, который обладал бы всеми этими навыками. У дата-сайентистов есть общий фундамент знаний, но каждый из них специализируется в конкретной области, причем настолько, что многие не смогут поменяться обязанностями. Первая часть этой книги призвана помочь вам разобраться во всех этих специализациях и в том, как принимать наилучшие решения для старта вашей карьеры. К концу у вас будет понимание того, как начать поиск работы.
В главе 1 раскрываются основы работы в Data Science, включая описание необходимых навыков и различных специализаций. В главе 2 подробно рассказывается о роли дата-сайентиста и о пяти типах компаний – это поможет вам лучше понять, на что будет похожа реальная работа. В главе 3 описываются различные пути приобретения навыков, а также преимущества и недостатки каждого из них. Из главы 4 вы узнаете, как создать портфолио как для практического опыта, так и для потенциальных работодателей.
1. Что такое Data Science?
В этой главе
• Три основных направления Data Science.
• Разные типы должностей в области Data Science.
«Самая сексуальная работа XXI века», «Лучшая работа в Америке»… Дата-сайентист – должность, названия которой даже не существовало до 2008 года, теперь является одной из самых востребованных среди соискателей, а работодатели не могут найти достаточное число подобных сотрудников. У такого ажиотажа есть веская причина: Data Science – это быстро развивающаяся область, медианная базовая зарплата специалистов которой в США в 2019 году составила более $100 000 . В хорошей компании дата-сайентисты пользуются большой автономией и постоянно изучают что-то новое. Они используют свои знания для решения серьезных задач: например, работают с врачами во время испытаний лекарственных препаратов, помогают спортивной команде в подборе новобранцев или изменяют модель ценообразования для бизнеса по производству виджетов. Наконец, в главе 3 мы поговорим о том, что универсального способа стать дата-сайентистом нет. В эту сферу приходят люди с разным образованием, поэтому вы не ограничены своей бакалаврской специальностью.
Однако не вся работа в сфере DS идеальна. И у компаний, и у соискателей бывают нереалистичные ожидания. Например, компании, плохо знакомые с Data Science, могут считать, будто один человек может решить все их задачи с помощью данных. Когда дата-сайентист наконец принят на работу в такую компанию, он сталкивается с бесконечным списком дел. Ему могут поручить немедленно внедрить систему машинного обучения, при том что никакие работы по подготовке или очистке данных предварительно не проводились. Иногда случается так, что никто не может ему помочь, направить или хотя бы посочувствовать при возникновении проблем. Мы поговорим об этом подробнее в главах 5 и 7, где расскажем, как не оказаться в не подходящих для новичка компаниях, а в главе 9 посоветуем, что делать, если вы попали в неприятную ситуацию.