Читаем Десять уравнений, которые правят миром. И как их можете использовать вы полностью

Новый коэффициент учитывает, как муравей выбирает между двумя альтернативными путями. Величину Qt можно представлять как количество феромона на пути к одному потенциальному источнику пищи, а Q't – на пути к другому. Теперь у нас две отслеживающие переменные (Q t и Q't) – по одной для каждого источника или (если мы моделируем использование соцсетей) по одной для каждого приложения в телефоне[161].

Когда сталкиваешься с новым запутанным уравнением с кучей параметров, всегда полезно рассмотреть сначала более простой вариант. Взглянем на новый коэффициент без квадратов:

Если β = 0, это просто доля, которую одна отслеживающая переменная составляет от их суммы. Соответственно, вероятность того, что муравей использует конкретное вознаграждение, пропорциональна доле отслеживающей переменной для него. Теперь посмотрим, что произойдет при β = 100. Поскольку Qt заключена между 0 и 1, она невелика по сравнению с числом 100, так что вышеуказанная дробь примерно равна 100 / (100 + 100) = 1/2. Вероятность того, что муравей будет использовать определенное вознаграждение, равна 0,5 (или пятьдесят на пятьдесят).

Проблема баланса между разведкой и эксплуатацией превращается в проблему нахождения оптимального уровня подкрепления маршрута. Это то же, что задача нахождения правильного значения β. Если подкрепление сильное (значение β очень мало), муравьи всегда следуют по пути с самым сильным запахом. Очень быстро второй источник забрасывается (насекомые перестают его посещать), и даже если он станет лучше, никто о нем не узнает. В результате муравьи оказываются прикованными к тому источнику, который казался лучше первоначально, даже если потом качество изменилось.

Слишком слабое подкрепление (значение β очень велико) приводит к противоположной беде. В этом случае насекомые выбирают маршруты наугад и не пользуются своими знаниями о том, какой из них лучше.

Ответ на задачу разведки и эксплуатации включает неожиданный поворот. Оказывается, решение дилеммы оптимального подкрепления связано с другим понятием, которое обычно возникает в совершенно другом контексте: критическими точками.

Поясню: критические (переломные) точки – моменты, когда накапливается какая-то критическая масса и система резко переходит из одного состояния в другое: например, мода внезапно распространяется после того, как авторитетные люди стали рекламировать этот бренд, или вспыхивает бунт, когда маленькая группа агитаторов заводит протестующих[162]. В каждом из этих и во многих других примерах подкрепление представлений приводит к внезапным переменам состояния. То же у муравьев – формирование феромонового маршрута происходит при достижении критической точки: путь начинается, когда небольшая группа муравьев решает двигаться к пище одной дорогой.

И вот удивительный вывод: наилучший способ сбалансировать разведку и эксплуатацию – чтобы муравьи оставались в состоянии, близком к критической точке. Если насекомые отойдут от нее, то слишком многие из них будут замкнуты на один источник пищи; они не смогут переключиться, когда появится что-то лучшее. Но если этому источнику будет привержено недостаточно насекомых и ситуация не дойдет до критической точки, то муравьи не смогут сосредоточиться на оптимальной пище. Они должны найти между разведкой и эксплуатацией золотую середину.

Муравьи эволюционировали так, чтобы оставаться в критической точке. Один из моих любимых примеров того, как они добиваются этого равновесия, обнаружила биолог Одри Дюссютур, работавшая с большеголовыми муравьями (этот вид получил свое название за необычно крупную голову). У них много поводов гордиться своей головой: они колонизировали большую часть тропического и субтропического мира, выиграв конкуренцию у других местных видов. Одри выяснила, что они используют два вида феромонов: один испаряется медленно и дает слабое подкрепление, другой же испаряется быстро и дает очень сильное подкрепление[163].

Мы с математиком Стэмом Николисом разработали модель с двумя уравнениями вознаграждения: одно для слабого, но длительно действующего феромона, а другое – для сильного, но короткоживущего. Мы показали, что комбинация этих двух феромонов позволила муравьям оставаться в районе критической точки. В нашей модели муравьи могли отслеживать два разных источника, переключаясь между ними всякий раз, когда качество пищи менялось. Одри подтвердила наши прогнозы экспериментально: когда она меняла качество еды, большеголовые муравьи переключали свои усилия на лучший источник.

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное