Рассмотрим теперь трехмерную упаковку узоров, заполняющую все пространство. В повседневном опыте встречается простейший из всех узоров, в котором кубические кусочки сахара упакованы вместе в коробку, или — с несколько более низким уровнем симметрии, поскольку сложенные предметы теперь не являются кубами — сложены вместе спичечные коробки (рис. 6.4). Здесь мы можем заметить, что, в зависимости от деталей, которые мы рассматриваем, мы можем приписать объекту различные типы симметрии. Один тип симметрии мы припишем стопке безличных спичечных коробков, но если мы примем во внимание оформление коробков и, возможно, ориентацию спичек в них, то это заставит нас приписать упаковке несколько более низкий уровень симметрии.
Рис. 6.4.
Два из возможных способов укладки в трехмерном пространстве. Верхняя диаграмма показывает сложенные вместе кубические элементарные ячейки («кусочки сахара»). Нижняя диаграмма показывает элементарные ячейки («спичечные коробки»). Всего существует семь форм элементарных ячеек, которые можно уложить таким образом, чтобы получить периодическую структуру. Сами по себе элементы могут содержать объекты, влияющие на общую симметрию: мы показали внутренности двух коробков, показывающие, что чередующиеся коробки содержат спички, указывающие в разные стороны.Сколько трехмерных узоров существует? Мы можем обнаружить различные симметрии, задавая различные вопросы. В раннем примере техники трансдукции, упомянутой в связи с с атомной гипотезой Дальтона, французский минеролог и священник Рене-Жюст Гаюи (1743-1822) предположил в 1784 г. в своем
Так же как мы идентифицировали пять сетей для обоев, отмечая положение точек, в которых потом можно расположить мотивы, мы проделаем это и для элементарных ячеек. Результирующие расположения точек, допустимые в трех измерениях, называются
Рис. 6.5.
Трехмерными аналогами сетей для обоев являются решетки Браве. В трех измерениях существует четырнадцать решеток Браве. Можно прикреплять к каждой точке объекты различными способами, но таких способов существует не более 230.