Предстоял еще долгий путь до того момента, когда тепло количественно вошло в научный обиход, была определена его атомная природа и оно было включено в закон сохранения энергии. Потребность понять тепло вырастала, как мы указали, из огромной важности парового двигателя в промышленности, и неудивительно, что большинство результатов, которые привели к нашему современному пониманию тепла, было получено группой ученых, сосредоточенной на севере Британии, в Глазго и Манчестере, и имевшей тесные связи с индустрией мануфактур.
Есть одна тема, которая будет вновь и вновь возникать на протяжении всей этой книги, и это тема о том, что продвижение науки связано с упразднением универсальных констант. Здесь появляется первый проблеск того, в чем она заключается, и прояснение того, что из этого вытекает. В девятнадцатом веке (и, следует признать, в некоторых частях мира в двадцать первом) работа измерялась одним набором единиц (единицей оказался эрг, но детали здесь не важны), а тепло измерялось другим набором (калории). Различие единиц измерения этих двух величин скрывало тот факт, что эти величины по существу одно и то же. В девятнадцатом веке прилагалось много усилий в попытке измерить «механический эквивалент тепла», работу, которая может быть получена из данного количества тепла, и найти эффективный коэффициент перехода от калорий к эргам. Эти усилия дали существенный вклад в прогресс науки и экспериментальные обоснования для закона сохранения энергии. Однако, с нашей сегодняшней точки зрения, это была пустая трата времени. Не поймите меня неправильно: это была плодотворно пустая трата времени. Она была плодотворной, поскольку помогла показать, что тепло есть форма энергии, что невозможно произвести работы больше, чем запасено тепла, и что тепла производится не больше, чем произведено работы. Это была пустая трата времени лишь потому, что теперь мы понимаем работу и тепло как две формы одной целостности, энергии, измеряем их одними и теми же единицами и больше не нуждаемся в переводе одной единицы в другую.
Джеймс Джоуль (1818-89) является тем, кто заслуживает наибольшего уважения за исключительно плодотворную пустую трату времени. Джоуль, рожденный в Манчестере, сын богатого пивовара, имел достаточно собственных средств, чтобы проводить исследования до тех пор, пока около 1875 г. деньги не кончились. В своем знаменитом эксперименте Джоуль использовал быстро вращающиеся гребные колеса, приводимые в движение падающим грузом и баламутящие воду, и измерял подъем температуры воды (рис. 3.8). Таким способом он сумел показать, что работа может быть преобразована в тепло. Сравнивая работу, необходимую, чтобы увеличить температуру воды на заданную величину, с количеством тепла, нужным для того, чтобы достичь того же эффекта, он смог измерить механический эквивалент теплоты. Хотя он и измерял величину, которая ныне бесполезна, он заслуживает безмерных похвал за то, что установил эквивалентность тепла и работы и таким образом показал, что эта величина, на попытки измерения которой он потратил так много времени, не была важной. Для увековечения памяти о его вкладе единица, которой измеряются работа, тепло и, конечно, энергия в целом, названа джоулем. Джоуль (Дж) очень маленькая единица энергии: каждый удар человеческого сердца производит работу около 1 Дж. Каждый день, в соответствии приблизительно со ста тысячами ударов, ваше сердце производит около ста тысяч джоулей работы, гоня кровь по вашему телу, поэтому вам необходимо поглощать достаточно пищи, чтобы обеспечить количество энергии, достаточное для поддержания его тикания. (Думание об этом требует немного больше энергии.)
Рис. 3.8.Идеализация прибора Джоуля для измерения механического эквивалента теплоты. Падающий груз вращает лопасти в воде, помещенной в изолированный контейнер. Проделанная работа может быть вычислена с помощью высоты, на которую опускается груз. Отслеживается температура воды, и величина поднятия температуры затем используется, чтобы вычислить количество теплоты, необходимое для достижения того же эффекта.
Работы Джоуля и его современников без сомнений установили, что работа и тепло являются формами энергии и что после принятия их в расчет балансовый отчет энергии остается неизменным. Доказано, что энергия сохраняется даже в грохочущих машинах, которые жили за счет тепла и фыркали паром, не говоря уже о более простых системах частиц, составляющих тела, рассматриваемые ньютоновской динамикой.