Читаем Десять великих идей науки. Как устроен наш мир. полностью

Мы видели в главе 3, как появилось понятие энергии, чтобы стать потом главной валютой физики. Мы сосредоточились на количестве энергии и увидели; что физические явления стали рациональными, как только было обнаружено сохранение энергии. Первое Начало термодинамики отдает должное этому сохранению в утверждении, что энергия Вселенной постоянна. Мы не будем спорить об этом законе в текущей главе. Однако, так же как две библиотеки могут содержать один и тот же набор книг, одна в упорядоченном виде, а другая в случайно наваленной груде, и отличаться поэтому качеством обслуживания, которое они могут предоставить, так и энергия имеет качественную сторону, которая влияет на ее эффективность. Качество запасенной энергии измеряется свойством, знаменитым тем, что ускользает от понимания, — энтропией. Я сказал «ускользает от понимания», но мы вскоре увидим, что энтропия является понятием, более легким для усвоения, чем энергия; все дело в том, что слово «энергия» висит у всех на кончике языка в повседневных разговорах, но едва посмеет прозвучать слово «энтропия», мы узнаем в первом слове старого друга, а в последнем дракона. Одна из целей этой главы — рассеять «трудности», несправедливо приписываемые имени «энтропия», и вернуть энтропии ее законное место в повседневном дискурсе.

Выражаясь нестрого, энтропия есть мера качества энергии, так что чем ниже энтропия, тем выше качество. Тело, в котором энергия хранится в чистом, тщательно упорядоченном виде, как книги в эффективной библиотеке, имеет низкую энтропию. Тело, в котором энергия хранится небрежно, хаотически, как книги в случайной груде, имеет высокую энтропию. Понятие энтропии ввел и представил количественно точно в 1856 г. Рудольф Клаузиус в ходе разработки своей формулировки Второго Начала. Он ввел его, определив изменение энтропии, которое имеет место, когда энергия поступает в систему в виде тепла. А именно он записал:

Изменение энтропии = энергия, полученная в виде тепла / температура, при которой произошла передача,

Так, если некоторая энергия поступает в тело в виде тепла при комнатной температуре, то имеет место возрастание энтропии как можно рассчитать по этой формуле (отметим, что в знаменателе используется температура по абсолютной шкале). Пока вы там сидите, читая это предложение, вы генерируете тепло, которое рассеивается в окружающем вас пространстве, и тем самым вы увеличиваете энтропию своего окружения. [17]Если то же количество энергии поступает в виде тепла в то же самое тело при более низкой температуре, изменение энтропии будет больше; если энергия покидает тело в виде тепла, то энергия, поступающая в виде тепла, отрицательна, поэтому отрицательно и изменение энтропии. То есть энтропия тела уменьшается, когда оно теряет энергию в виде тепла, как остывающая чашка кофе. Заметим, что изменение энтропии задается энергией, передаваемой как тепло, и никак не зависит от энергии, передаваемой как работа. Работа сама по себе не порождает и не уменьшает энтропию.

Прежде чем я подниму занавес и покажу вам, что такое энтропия на самом деле, давайте убедимся, что это понятие действительно объединяет законы, предложенные Кельвином и Клаузиусом. Действительно, Клаузиус предположил, что оба утверждения могут быть поселены под одной крышей с помощью утверждения, что энтропия никогда не убывает. [18]Рассмотрим первое утверждение Кельвина, эквивалентное другому, гласящему, что «ваш двигатель будет работать, только если вы потратите попусту некоторую энергию», выраженное в терминах изменений энтропии. Предположим, мы объявляем, что изобрели двигатель, который использует все тепло и не нуждается в холодном стоке. Клаузиус сказал бы следующее:

Вы отняли тепло от горячего источника, поэтому энтропия резервуара упала. Все это тепло превращено машиной в работу, так что энергия вышла в окружающую среду в виде работы. Но работа не меняет энтропии, поэтому конечным результатом является уменьшение энтропии горячего источника. В соответствии с моим утверждением энтропия никогда не убывает. Поэтому ваш двигатель не может работать, в точности, как утверждал Кельвин.

Теперь рассмотрим первоначальное утверждение Клаузиуса о том, что тепло не течет от холодного к горячему. Предположим, мы объявляем, что наблюдали тепло, текущее в неправильном направлении, например, обнаружили лед в стакане воды, поставленном в печь. Клаузиус сказал бы теперь следующее:

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже