Эта последовательность соответствует внешнему виду периодической таблицы. Так, у атомов элементов из групп 1 и 2 (группы, содержащие, например, натрий и магний)
Мы совершили полный круг. Химики девятнадцатого века разглядели родственные отношения между элементами. Полный перечень родственных связей — настолько, насколько элементы уже были открыты — был создан Менделеевым к концу века. Однако его конструкция носила эмпирический характер, и понимания того, почему элементы приходятся друг другу кузенами, в то время быть не могло. Как же могло случиться, что один сорт вещества является родственным другому? На этот вопрос удалось пролить свет, когда в начале двадцатого века стала понятна структура атомов. Как только в 1920-х гг. были обнаружены ядра и правила, управляющие размещением электронов, немедленно стало ясно, что
Глава шестая
Симметрия
Вычисление количества красоты
Хрисипп утверждает, что красота не в элементах, а в симметрии частей.
Может ли быть так, что красота есть ключ к пониманию этого прекрасного мира? Греческий скульптор Поликлит из Аргоса, расцвет деятельности которого пришелся на 450-420 гг. до н.э., заложил основы нашего современного понимания фундаментальных частиц, когда в своем
Если под красотой мы имеем в виду симметрию и контролируемые нарушения симметрии, Мондриана, переходящего в Моне, то красота, конечно, лежит в сердце мира. Часть этой красоты открыта для непосредственного восприятия, например, когда мы смотрим на прекрасное произведение искусства. Другая часть, однако, глубоко спрятана и неочевидна для необученного взгляда. Тысячи лет, прошедшие со времени Поликлита, были использованы для того, чтобы выкопать скрытую красоту, дать ее оценку в математической форме, и затем, используя математические средства, провести более глубокие раскопки ландшафта реальности. Как я уже подчеркивал, по мере развития науки, ее глубина и богатство возрастают за счет увеличения абстрактности ее концепций. Это возрастание нигде не прослеживается лучше, чем в открытии симметрии и в развернутом ее использовании в качестве инструмента познания.
Теперь я проведу вас, настолько подробно, насколько мне удастся, по пути, ведущем от непосредственно воспринимаемого к воображаемому, и продемонстрирую ту власть, которую дает в наши руки симметрия. Этот путь поведет нас на самый край обрыва того, что еще доступно воображению.