Читаем Десять великих идей науки. Как устроен наш мир. полностью

Рис. 6.13. Представление калибровочных преобразований. Верхняя диаграмма показывает волновую функцию свободной частицы. Нижняя диаграмма показывает, как изменяется волновая функция, когда ее фаза меняется всюду на одну и ту же величину. Чтобы показать изменение фазы, мы использовали условное вращение волны вокруг направления ее движения. Амплитуда волновой функции не меняется от этого преобразования, поэтому волновая функция несет ту же самую информацию о положении частицы. Калибровочное преобразование представляет собой поэтому симметрию системы.

Вообще говоря, калибровочное преобразование может принимать разные значения в разных точках пространства; другими словами, мы можем изменять фазу волновой функции на различные в каждой точке величины (рис. 6.14). Предположим, мы так и делаем и по-прежнему требуем чтобы уравнение Шредингера оставалось неизменным; то есть мы требуем от этого уравнения калибровочной инвариантности относительно всех операций группы U(1), допускающих различные сдвиги фазы в каждой точке пространства. Теперь возникает нечто замечательное. Чтобы гарантировать калибровочную инвариантность в этом более общем случае, мы должны ввести в уравнение еще один член. Этот член эквивалентен наличию электромагнитной силы, действующей на электрон. Другими словами, требование калибровочной инвариантности влечет существование электромагнитной силы. И смыслом этого является то, что требование симметрии требует и существования силы. Симметрия управляет.

Рис. 6.14. На этой диаграмме мы попытались передать более общее калибровочное преобразование, в котором фаза меняется по-разному в каждой точке, так что угол отклонения от вертикали различен в каждой точке (как показано в круге). Мы упростили представление, предположив, что внутри каждой полуволны угол поворота одинаков: в реальности изменения были бы непрерывными. Инвариантность относительно этого вида калибровочного преобразования влечет существование силы.

Мы видели, что калибровочная инвариантность уравнения Шредингера относительно группы преобразований симметрии, которую мы назвали U(1) — группы, имеющей дело с фазой, — влечет существование электромагнитной силы. На ум, естественно, приходит вопрос: а не являются ли другие силы также следствием калибровочной инвариантности? То есть не существует ли более сложный способ совершать преобразования волновых функций частиц, требующий, для того чтобы уравнения оставались неизменными, присутствия в них дополнительных членов, которые мы могли бы интерпретировать как другие виды сил? Успех этой попытки показал бы, что все силы имеют общий источник.

Стивен Вайнберг (р. 1933), Абдус Салам (1926-96) и Шелдон Глэшоу (р. 1932) пришли к этому синтезу электромагнитной и слабой сил в 1973 г., и их работа привела к формулированию принятой сегодня стандартной модели объединенных сил. Группу преобразований симметрии они определили как комбинацию группы U(1), дающей электромагнитную силу, и другого, более сложного множества преобразований, называемого SU(2), которое объясняет слабое взаимодействие. Тот факт, что полная группа симметрии является комбинацией U(1) и SU(2), обозначаемой как U(1)×SU(2), говорит нам, что эти два типа сил имеют общее происхождение. Это два лика электрослабого взаимодействия. Вспомните аналогию с кубом: электрослабое взаимодействие подобно кубу, электромагнитная сила подобна квадрату, видимому при одной ориентации куба, а слабая сила подобна шестиугольнику, который виден, когда куб поворачивается под другим углом.

Перейти на страницу:

Похожие книги

Развитие эволюционных идей в биологии
Развитие эволюционных идей в биологии

Книга известного биолога-эволюциониста, зоолога и эколога Н. Н. Воронцова представляет собой переработанный и расширенный курс теории эволюции, который автор читает на кафедре биофизики физфака МГУ.В книге подробно прослежено развитие эволюционной идеи, возникшей за тысячи лет до Дарвина и принадлежащей к числу немногих общенаучных фундаментальных идей, определивших мышление юнца XIX и XX столетия. Проанализированы все этапы зарождения и формирования представлений об эволюции, начиная с первобытного общества. Особое внимание уделено истокам, развитию и восприятию дарвинизма, в частности, в России, влиянию дарвинизма на все естествознание.Последние главы показывают, как сегодняшние открытия в области молекулярной биологии, генетики и многих других дисциплин готовят почву для нового синтеза в истории эволюционизма.Книга насыщена массой интересных и поучительных исторических подробностей, как правило, малоизвестных, и содержит большое число иллюстраций, как авторских, так и взятых из труднодоступных изданий. Книга рассчитана на широкого читателя, не только биолога, но любого, интересующегося современной наукой ее историей.

Николай Николаевич Воронцов

Биология, биофизика, биохимия