Читаем Десять великих идей науки. Как устроен наш мир. полностью

Мендель хотел знать, каким способом гибридизация декоративных растений производит изменения, повторяющиеся в следующих поколениях. Он решил поискать систематическую схему, которая, как он считал, могла скрыто присутствовать в наблюдениях. В первые два года он решил убедиться, что его растения дают правильное потомство, что кустики зеленого гороха порождают зеленый горох, а кустики желтого гороха порождают желтый, и то же происходит с другими признаками. Потом он начал серию перекрестных опылений и самоопылений. Например, когда он скрещивал зеленый горох с желтым, весь горох в потомстве первого поколения (в так называемых F1 гибридах) был желтым. Однако, когда гибриды самоопылялись, три четверти гороха в следующем, F2, поколении были желтыми, а одна четверть зеленой. Таинственным образом первоначальный зеленый опять появился. Подобная схема, с тем же численным отношением, возникала, когда он скрещивал и потом самоопылял растения, проявляющие другие характеристики. Ясно, что схема проявилась, а схемы вопиют, требуя объяснения.

На основании огромного числа наблюдений Мендель построил гипотезу. Первым ключом для него стал тот факт, что его эксперименты приводят к вариантам с простыми числовыми отношениями. Чтобы найти объяснение дискретным числам, которые получались в этих отношениях, он предположил, что различие внутри каждой пары характеристик (зеленый и желтый горох, например) обусловлено присутствием в растении различных дискретных единиц. Мендель использовал термин «элемент», чтобы обозначить дискретные целостности наследственности, и употреблял термин «характер», когда обсуждал внешний вид, фенотип своих растений. Большинство его рассуждений проводилось в терминах этих наблюдаемых характеров, и только более поздние интерпретаторы обратили внимание на роль лежащих в основании «элементов». Эти целостности тогда получали множество различных наименований, но теперь повсеместно известны под именем, которое предложил в 1909 г. датский биолог Вильгельм Людвиг Иогансен, гены. Более точно, различные версии генов, ответственные за частные фенотипы, например, ответственные за цвет гороха, называются аллелями. Так, зеленый горох и желтый горох соответствуют разным аллелям гена, ответственного за цвет гороха.

Чтобы объяснить простые числовые отношения, установленные Менделем, предположим, что гены — мы будем использовать современный термин — существуют парами, причем каждому характеру соответствует одна пара, и что каждая гамета (яйцеклетка и сперма у животных, семяпочка и пыльца у растений) содержит один из этих генов. Тогда при зачатии (опылении у растений) мужская и женская гаметы соединяются случайно и объединяют индивидуальные гены обратно в пары. Мендель разделил наследуемые характеристики на доминантные и рецессивные, и задним числом мы можем видеть, что это разделение приложимо также и к генам. Поэтому, если доминантный аллель объединится в пару с рецессивным, фенотип проявит характеристики доминантного аллеля. Например, эксперименты Менделя показывают, что аллель желтого гороха является доминантным по отношению к аллелю зеленого гороха, поскольку при скрещивании дающего правильное потомство желтого растения с дающим правильное потомство зеленым растением все потомки являются желтыми.

Можно проиллюстрировать эти идеи символически. Обозначим аллель желтого гороха буквой Y, а рецессивный аллель зеленого гороха буквой у (в элементарной генетике есть соглашение: доминантный аллель обозначается буквой, указывающей на соответствующее свойство, в данном случае на английское слово yellow, желтый, а его рецессивный двойник такой же, но маленькой, буквой). Дающие правильное потомство желтый и зеленый горох обозначаются соответственно как YY и yy. Гаметы каждого растения обозначаются соответственно как Y и y. Когда их скрещивают, потомство должно быть Yy, и весь горох будет желтым, потому что желтый (Y) доминантен. Теперь самоопылим эти гибриды. Поскольку гамета растения Yy может случайным образом оказаться Y или y, потомки растений Yy будут четырех видов: YY, Yy, yY и yy. Только последний из них, yy, соответствует зеленому гороху (поскольку Y доминантен в Yy и yY), так что растения являются желтыми и зелеными в отношении 3:1, в точности как и наблюдал Мендель. Он сумел распространить эту простую схему на другие характеристики и их комбинации (зеленый и карликовый горох, к примеру) и в каждом случае обнаружил, что ожидаемые отношения подтверждаются. (Именно здесь Фишер подверг его статистику атаке, поскольку отношения не были точными, а разброс результатов — который мог возникнуть из-за систематической ошибки, сдвига в желаемую сторону, при решении вопроса, является ли горошина со слегка неровной поверхностью гладкой или морщинистой — вызывал подозрения.)

Перейти на страницу:

Похожие книги

Развитие эволюционных идей в биологии
Развитие эволюционных идей в биологии

Книга известного биолога-эволюциониста, зоолога и эколога Н. Н. Воронцова представляет собой переработанный и расширенный курс теории эволюции, который автор читает на кафедре биофизики физфака МГУ.В книге подробно прослежено развитие эволюционной идеи, возникшей за тысячи лет до Дарвина и принадлежащей к числу немногих общенаучных фундаментальных идей, определивших мышление юнца XIX и XX столетия. Проанализированы все этапы зарождения и формирования представлений об эволюции, начиная с первобытного общества. Особое внимание уделено истокам, развитию и восприятию дарвинизма, в частности, в России, влиянию дарвинизма на все естествознание.Последние главы показывают, как сегодняшние открытия в области молекулярной биологии, генетики и многих других дисциплин готовят почву для нового синтеза в истории эволюционизма.Книга насыщена массой интересных и поучительных исторических подробностей, как правило, малоизвестных, и содержит большое число иллюстраций, как авторских, так и взятых из труднодоступных изданий. Книга рассчитана на широкого читателя, не только биолога, но любого, интересующегося современной наукой ее историей.

Николай Николаевич Воронцов

Биология, биофизика, биохимия