По существу, ни о каких естественных цветах в этом случае говорить нельзя. Но очень часто для лучшего различения мелких деталей объекта и определения оптических свойств отдельных его частей объект фотографируют в различных участках спектра ультрафиолетовых лучей. Можно условно назвать самые длинноволновые из них красными, промежуточные— зелеными, а самые коротковолновые — синими. Три негатива, полученные таким способом, можно использовать для получения цветного отпечатка. Изображение такого рода может оказаться гораздо более подробным: участки красного цвета на нем будут соответствовать тем местам изображения, где от объекта приходило много длинноволновых ультрафиолетовых лучей; зеленые цвета покажут, где приходило много промежуточных лучей, и так далее. Зная теорию смешения цветов, вы можете судить о составе лучей и в тех местах, где имеются отличные от исходных хроматические цвета. Одна из фотографий подобного рода приведена здесь.
Ультрафиолетовые микроскопы Брумберга позволяют примерно вдвое повысить разрешающую способность и полезное увеличение микроскопа. К сожалению, идти по пути еще большего укорочения световых волн затруднительно, вследствие того что большинство объектов очень сильно поглощает короткие ультрафиолетовые лучи. Кроме того, возникают трудности и иного рода. Они уже связаны с оптическими свойствами стекла: с сильным поглощением ультрафиолетовых лучей в стекле.
В последние годы в микроскопии стал широко использоваться и другой участок диапазона невидимых световых лучей — инфракрасный. Разрешающая сила микроскопов и полезное увеличение при работе в этих лучах, естественно, снижаются, но цель применения инфракрасных лучей в микроскопии другая; эти лучи позволяют вести такие исследования, которые раньше казались совершенно невыполнимыми. Оказывается, что многие органические и неорганические вещества, непрозрачные для лучей видимого света, хорошо пропускают инфракрасные. Это позволяет исследовать их микроструктуру с помощью специальных инфракрасных микроскопов.
Модель инфракрасного микроскопа была создана электрофизической лабораторией Института металлургии Академии наук СССР в 1956–1957 годах. Эта модель хорошо зарекомендовала себя, и с 1960 года начался выпуск инфракрасных микроскопов «МИК-1».
Микроскоп этого типа позволяет проводить наблюдения как в видимых, так и в ближней зоне (до 1200 миллимикронов) инфракрасных лучей. Наблюдение может вестись в отраженном и проходящем свете. В микроскопе имеется преобразователь, и поэтому изображение можно наблюдать непосредственно или фотографировать.
Мы привыкли считать металлы непрозрачными, и действительно нам никогда не приходилось видеть их иными. И, если бы к кому-либо из нас попал чистый кремний (силиций) или чистый германий (экасилицием называл его Менделеев, предсказавший существование этого химического элемента), мы, глядя на блестящие серебристые кусочки этих металлов, и не подумали бы, что они прозрачны. На самом же деле они очень хорошо пропускают свет, но не видимый, а инфракрасный.
В наши дни кремний и германий — металлы новейшей радиоэлектроники.
Именно из кристаллов этих химических элементов делаются многие полупроводниковые устройства: диоды, фотодиоды, транзисторы, фототранзисторы, солнечные батареи для спутников, элементы холодильных устройств. Для их изготовления кремний и германий должны быть полностью очищены от различных примесей, а их кристаллическое строение не должно иметь никаких дефектов. Получение химически чистых крупных кристаллов — одна из самых сложных задач, когда-либо решавшихся металлургией. И поэтому не случайно, что инфракрасный микроскоп создали не в каком-либо оптическом институте, а в Институте металлургии, где он, по-видимому, был наиболее необходимым.
Инфракрасный микроскоп позволяет заглянуть внутрь кристаллов кремния и германия. Он дает возможность более глубоко изучить возникающие дефекты и тем самым найти пути их устранения. На помещенной здесь фотографии, сделанной с помощью «МИК-1», видно изображение кристалла кремния; темные загнутые линии и есть дефекты его строения.
Итак, инфракрасные лучи позволили проникнуть в толщу непрозрачных для обычного света веществ. Но при этом разрешающая сила и полезное увеличение микроскопа упали. И, видимо, у большинства читателей уже давно возник вопрос: «Почему же для этих целей не были использованы рентгеновские или гамма-лучи, которые практически проникают через все вещества и в то же время имеют очень короткие длины волн?»
Вопрос этот совершенно справедливый. Действительно, микроскоп, работающий на этих лучах, имел бы очень высокую разрешающую способность. С его помощью можно было бы увидеть даже молекулы.