Но как быть с противоречием «отсчитанного бесконечного числового ряда»? Мы сумеем исследовать его поближе, когда господин Дюринг покажет нам раньше свой фокус и отсчитает его
. Когда он покончит с задачей считать от — ∞ (минус бесконечность) до нуля, тогда пусть он приходит к нам. Ведь ясно, что откуда бы он ни начал считать, он повсюду оставляет за собой бесконечный ряд, а значит, и задачу, которую он должен решить. Пусть он перевернет свой собственный бесконечный ряд 1+2+3+4... и попробует считать от бесконечного конца до единицы; ведь это, очевидно, попытка человека, совсем не понимающего сути дела. Мало того. Когда господин Дюринг утверждает, что бесконечный ряд протекшего времени отсчитан, то он вместе с этим утверждает, что время имеет начало, ибо иначе ведь он не мог бы вовсе начать «отсчитывать». Следовательно, он снова предполагает то, что он должен доказать. Таким образом, представление об отсчитанном бесконечном ряде, иначе говоря, мирообъемлющий дюрингов закон определенного количества, есть contradictio in adjecto, содержит внутреннее противоречие, и притом абсурдное противоречие.Ведь ясно: бесконечность, имеющая конец, но не имеющая начала, не более и не менее бесконечна, чем бесконечность, имеющая начало, но не имеющая конца. Малейшая крупица диалектического мышления должна была бы подсказать господину Дюрингу, что начало и конец неразрывно связаны между собою, как северный полюс и южный полюс, и что если отбрасывают конец, то начало становится концом — тем единственным
концом, который и имеется у ряда, и наоборот. Вот эта ошибка была бы невозможна без математической привычки оперировать над бесконечными рядами. Так как в математике мы должны исходить от определенного, конечного, чтобы прийти к неопределенному, бесконечному, то все математические ряды — положительные и отрицательные — должны начинаться с единицы, иначе нельзя производить с ними выкладок. Но идеальная потребность математики далеко не есть принудительный закон для реального мира.Впрочем, господин Дюринг никогда не сумеет представить себе без противоречий действительную бесконечность. Бесконечность есть
противоречие, и она полна противоречий. Противоречием является уже то, что бесконечность должна быть составлена из одних только конечностей, а между тем это так. Предположение ограниченности материального мира приводит к таким же противоречиям, как и предположение его безграничности, и каждая попытка устранить эти противоречия приводит, как мы уже видели, к новым и худшим противоречиям. Именно потому, что бесконечность есть противоречие, она представляет бесконечный, развертывающийся без конца во времени и пространстве процесс. Снятие противоречия было бы концом бесконечности. Это уже совершенно правильно понял Гегель, третировавший поэтому с заслуженным презрением господ, которые любят мудрить над этим противоречием.