Читаем Диалектика природы и естествознания полностью

Исторически и логически первичными свойствами объективного мира, которые стали изучаться математикой, были различные отношения меры — количественно определенного качества или качественно определенного количества, с которыми люди изначально сталкивались в практической деятельности[17]. Математика начинала с изучения конкретных систем объектов, поэтому «качественная окраска» исследуемых количественных отношений мешала разглядеть изоморфизм отношений различных предметных областей, понять эти отношения как частные проявления некоторой абстрактной и общей структуры. Так, структура группы как математического конструкта в предельно общей форме оставалась скрытой за многими частными законами композиции, свойствами подстановок на множествах, сложением и умножением чисел, преобразованиями векторов в пространстве. В XVII–XIX вв. лишь некоторые выдающиеся мыслители видели в математике не сумму отдельных дисциплин, а общую науку об отношениях[18]. Даже Гегель воспринимал математику как науку о величинах и числах, правда отмечая ее абстрактно-количественный характер как метафизическую ограниченность, свидетельство отрыва количества от качества. «…Математика природы, если она хочет быть достойной имени науки, по существу своему должна быть наукой о мерах»[19], — подчеркивал он.

Таким образом, предмет математики — это теоретический образ объекта, его абстрактное и идеализированное представление. Со временем в математике все большее значение приобретают исследования, непосредственно направленные на познание не внешнего мира, а на само математическое знание и методы его получения. Происходит как бы переход от «первичного» отражения к «вторичному». Поскольку в этом случае объектом исследования становится само исследование, естественно назвать этот уровень математического познания метаисследованием, а его объект — математическое знание — метаобъектом[20].

Примером метаисследований являются работы по основаниям математики, но в целом область метаисследований в современной математике гораздо шире и включает в себя значительную часть таких математических исследований, которые не имеют непосредственного соприкосновения с решением каких-либо прикладных задач. Предмет математики в таком случае оказывается частью ее метаобъекта.

Важность метаисследований в математике определяется тем, что «вторичное» отражение по существу есть дополнение и продолжение «первичного» отражения. Исследование знания есть одно из средств изучения того объективного содержания, которое отражено в нем. То же можно сказать и об изучении познавательных процедур. Зная какую-либо познавательную процедуру, можно найти вид знания, которое с ее помощью было получено, и на основании последнего определить объективный аналог этого знания[21]. Однако отметим еще раз, что метаисследование следует рассматривать как вспомогательный вид познания, подчиненный главной задаче — познанию объективного мира.

Метаисследование в таком понимании не только не совпадает, но прямо противоположно тому, что принято называть метаматематикой. Дело в том, что метаисследования относятся к идеальным, абстрактным объектам — понятиям, смыслам, суждениям, в то время как метаматематика имеет дело только с конкретными «объектами» вроде знаков какого-нибудь искусственного языка, значения которых в рамках метаматематического исследования не принимаются во внимание. Формальные системы, «представляющие» тот или иной раздел содержательной математики, изучаются в метаматематике как материальные объекты со структурой, подобно фигурам в геометрии, им можно приписывать только такие свойства и отношения, которые воспринимаются непосредственно. Объект метаматематики — это результат «двойного отрицания» первичного, объективно-реального объекта. Здесь происходит возврат к чувственному созерцанию изучаемых отношений, но уже между не «естественными», а искусственными объектами.

Однако в некоторых работах по философии математики отмечается, что основным объектом математического познания является не реальный объект, а метаобъект или даже «метаметаобъект». Гносеологическим источником этой ошибки является относительная независимость метаобъекта. Известно, что даже наиболее элементарные понятия математики абстрактны по своему содержанию. Поэтому при создании математических теорий приходится учитывать не столько содержательные, сколько формальные, логические, независимые от конкретного содержания отношения между понятиями. Известно, что уже на заре развития математики достоверность выводов определялась не содержательными, а формальными критериями, поскольку математика сама по себе не содержит критериев, позволяющих отличать утверждения, относящиеся к действительности, от утверждений, имеющих только математический смысл. Так, понятие существования в математике значительно отличается от понятия объективно-реального существования[22].

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже