Читаем Диалоги (июнь 2003 г.) полностью

Но сейчас, может быть, стоит перейти к тому, что алгоритмизуется работой правого полушария, и что нашло отражение в программах и для игры в нарды, и в других задачах дискретной оптимизации – это динамическая оценка позиции, даже лучше сказать, применение динамически генерируемых функций риска. Может быть, об этом вы расскажете подробнее?

А.Р. Про статические оценки я коротко уже говорил. В недетерминированных играх, благодаря этой недетерминированности, мы не знаем точно, что у нас получится, и мы перебираем всевозможные случайные исходы. Выпали у нас показания кубиков такие-то, мы получаем такой-то прогноз, следующий – следующий прогноз. Итак, мы для каждого исхода случайного события имеем какую-то коллекцию прогнозов, каких-то построенных статических оценок.

А как оценить вообще ситуацию для всех случайных исходов? В какую ветвь пойти нам при принятии решения? Здесь можно либо просто усреднять, то есть получать среднеарифметическое математическое ожидание и где оно нас устраивает, туда и идти. Но это не всегда бывает оправдано. Оправданным оказался подход с функцией риска – этот набор прогнозов мы усредняем, но специальным образом.

Б.М. Сейчас я опять перебью на секунду. Набор прогнозов можно рассматривать как вектор аргумента функций. Это не совсем правильное название, и математики могут за него поругать, но это близко к истине.

А.Р. Тем более там размерность нефиксированная получается.

Это специальное усреднение основывается на весовой функции, которая у нас называется «функция риска» и которая также подбирается специальным образом. А подбирается она так. Если у нас дела идут в гору…

Б.М. Давайте я снова вас перебью. Итак, есть у нас набор значений статической оценки позиции. И вот эти наборы значений как-то распределены, условно говоря, на отрезке от минус единицы до единицы. То есть, минус единица – самый плохой результат, единица – самый хороший, это результат, зависящий от выпадения кубиков. Ну, опять же, если снова говорить про бэкгеммон, про нарды, тут можно сказать, что у нас либо 21 вариант, если показания кубиков 5,6 и 6,5 считать одинаковыми, либо говорить, что 36 вариантов, если их считать разными, но это дело не меняет.

Главное, что некоторое количество вариантов тут распределено. И действительно, у нас могут быть и очень хорошие, и очень плохие показания кубиков. То есть в реальных партиях, в реальных оценках позиции распределение этого вектора – от минус до плюс единицы. Как усреднять? Алексей говорил, что можно среднеарифметически, но лучше не так, лучше усреднять с помощью, как он тоже начал говорить, функции риска. Что это такое. На отрезке от минус до плюс единица проводится какая-то функция, и наши аргументы получают временные значения, равные высоте столбиков ординат этой функции в нужных абсциссах. Я не очень красиво выразился, может, вы меня поправите?

А.Р. Каждому прогнозу, каждой оценке как бы приписывается свой вес.

Б.М. Равный значению этой функции риска. А абсцисса там, где она и находится.

А.Р. Потом эта система взвешивается, ищется центр тяжести.

Б.М. Центр тяжести – вот она главная оценка! То есть, то, чего мы не нашли ни в каких других программах.

Во-первых, мы применили эту оценку в задачах дискретной оптимизации. В общем-то, может быть, это отдельный разговор, причём здесь задача дискретной оптимизации. Причём, например, здесь так называемая «задача коммивояжёра», когда там никакого недеретминизма нет. Есть – причём те же самые алгоритмы применяются. И там получаются достаточно хорошие результаты.

Но раз уж я об этом заговорил, ещё пару слов скажу. Здесь неизвестность, недетерминизм, то есть неизвестные заранее показания кубиков. А там неизвестные заранее исходы, то есть продолжение пересчёта какой-то матрицы, достаточно большой. Мы можем делать только прогнозы, как пойдёт этот расчёт. И вот есть программы-эксперты, которые делают эти прогнозы. То есть здесь неизвестность, а там… Ну, может быть, тоже неизвестность, полученная от разных прогнозов. То есть те же самые приёмы применяются нами в классических задачах дискретной оптимизации.

А.Г. В казино не хотите в рулетку играть с этим подходом?

Б.М. Нет, но один из результатов этого подхода – предсказание курса валют, которые мы безуспешно всё пытаемся куда-нибудь пристроить. Но этих программ-предсказателей немереное количество.

А.Г. Насколько аккуратны ваши действия?

Б.М. Предсказать какой-то катаклизм вроде нашего кризиса 98-го года, видимо, никому не удавалось и не удастся, а доказать, что наша программа лучше, на каком-то более простом примере нам пока не удаётся. Но, в общем-то, это тоже не ставится как цель. Получить отсюда прибыль, коммерческий эффект, это второе, третье дело. Пока не получается. Получится – хорошо. Не получится – не страшно. Я всё-таки вижу основную цель в том, чтобы этот подход ввести в программирование игр, в другие задачи. Победить – дай Бог – на следующем чемпионате мира, 2004 года.

Перейти на страницу:

Похожие книги

Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное
Япония Нестандартный путеводитель
Япония Нестандартный путеводитель

УДК 520: 659.125.29.(036). ББК 26.89я2 (5Япо) Г61Головина К., Кожурина Е.Г61 Япония: нестандартный путеводитель. — СПб.: КАРО, 2006.-232 с.ISBN 5-89815-723-9Настоящая книга представляет собой нестандартный путеводитель по реалиям современной жизни Японии: от поиска жилья и транспорта до японских суеверий и кинематографа. Путеводитель адресован широкому кругу читателей, интересующихся японской культурой. Книга поможет каждому, кто планирует поехать в Японию, будь то путешественник, студент или бизнесмен. Путеводитель оформлен выполненными в японском стиле комиксов манга иллюстрациями, которые нарисовала Каваками Хитоми; дополнен приложением, содержащим полезные телефоны, ссылки и адреса.УДК 520: 659.125.29.(036). ББК 26.89я2 (5Япо)Головина Ксения, Кожурина Елена ЯПОНИЯ: НЕСТАНДАРТНЫЙ ПУТЕВОДИТЕЛЬАвтор идеи К.В. Головина Главный редактор: доцент, канд. филолог, наук В.В. РыбинТехнический редактор И.В. ПавловРедакторы К.В. Головина, Е.В. Кожурина, И.В. ПавловКонсультант: канд. филолог, наук Аракава ЁсикоИллюстратор Каваками ХитомиДизайн обложки К.В. Головина, О.В. МироноваВёрстка В.Ф. ЛурьеИздательство «КАРО», 195279, Санкт-Петербург, шоссе Революции, д. 88.Подписано в печать 09.02.2006. Бумага офсетная. Печать офсетная. Усл. печ. л. 10. Тираж 1 500 экз. Заказ №91.© Головина К., Кожурина Е., 2006 © Рыбин В., послесловие, 2006 ISBN 5-89815-723-9 © Каваками Хитоми, иллюстрации, 2006

Елена Владимировна Кожурина , Ксения Валентиновна Головина , Ксения Головина

География, путевые заметки / Публицистика / Культурология / Руководства / Справочники / Прочая научная литература / Документальное / Словари и Энциклопедии