И вот любопытно, что в 39-м году Оппенгеймер и Снайдер (Оппенгеймер – это человек, который считается отцом атомной бомбы) рассчитали коллапс сферического облака пыли, и картина была довольно ясной. Действительно, за конечное время происходит сжатие этого облака пыли в сингулярность. В какой-то момент пересекается гравитационный радиус. По часам удалённого наблюдателя, действительно, это время равно бесконечности, по собственному времени это время конечно. То есть вся эта картина динамически действительно была описана. И в том же году Эйнштейн публикует статью (это происходит в 39-м году; он был в это время уже в Принстоне), в которой он высказывает соображение, почему это на самом деле не может осуществляться в природе.
Дальше любопытная история: в 42-м году известный физик-гравитационист Бергман публикует книгу, и в этой книге, которая до сих пор очень хорошая книга, поскольку до сих пор используется в качестве учебника, он вообще не упоминает о работе Оппенгеймера-Снайдера, зато он пропагандирует соображения Эйнштейна.
И надо сказать, что, действительно, где-то до конца 50-х годов никакого продвижения в теории гравитационного коллапса практически не было. Где-то уже в конце 50-х годов появились новые работы, в которых, прежде всего, было указано, что есть, кроме решения Швардшильда, ещё возможность описания внутренности чёрной дыры в других системах координат, других системах отсчёта, и таких систем было найдено много. Потом в 63-м году было открыто решение, описывающее вращающуюся чёрную дыру, решение Керра; и вот это решение, довольно сложное математически, сейчас считается стандартным решением в теории чёрных дыр.
Ну, и начиная с 68-го года, когда уже появился термин «чёрная дыра», предложенный Уилером, и до 75-го года, как обычно считается, была уже детально разработана теория чёрных дыр в её современном понимании.
Одним, скажем, из утверждений, было утверждение Вилля, что чёрная дыра не имеет волос. Это означает, что когда произошёл гравитационный коллапс, всё ушло под гравитационный радиус. Мы можем видеть только некоторые параметры этого объекта, то есть мы можем видеть его массу, его угловой момент, электрический заряд. И это всё, что от него осталось, независимо от того, что было вначале какой бы сложной ни была звезда, какими бы там параметрами ни обладала, то есть многообразие звёзд гораздо больше, чем многообразие чёрных дыр.
Кстати, впоследствии оказалось, что это вовсе не всегда так, что это зависит от того, какая же материя участвует в этом процессе. Скажем, материя более сложная, чем электромагнитное поле или пыль, например, поля Янга-Милса, которые участвуют в сильных взаимодействиях, уже приводят к совершенно другим закономерностям. Там есть и волосы, и чёрные дыры, но не такие, как здесь. Но стандартная модель, была основана на некоторых утверждениях; их можно просто перечислить: это общие теоремы сингулярности, доказанные Пенроузом, а затем в работах Хокинга и Пенроуза. Была высказана гипотеза о таких сингулярностях, которые, вообще, действительно возникают практически всегда, в любых решениях общей теории относительности, если вещество, которое там предполагается заложенным, удовлетворяет обычным предположениям о положительности энергии и некоторым другим. Тогда, действительно, в таких решениях, независимо от сферической симметрии или какой-то другой симметрии, общей закономерностью являются возникновение сингулярностей. И очень во многих случаях можно доказать ещё и то, что получило название принципа космической цензуры: сингулярность должна быть скрыта под горизонтом событий. Это и есть типичный образ чёрной дыры. А новое было то, что «чёрная дыра» это не какое-то частное решение, вроде решения Швардшильда или решения Керра, обладающее специальной симметрией, а что это общее явление, общее предсказание релятивистской теории гравитации.
Ну, затем были сформулированы более тонкие утверждения, что, скажем, горизонт должен обладать обязательно сферической топологией, что он не может быть, скажем, тором или каким-нибудь кренделем – что, кстати, потом оказалось тоже не совсем верным. Это верно только в том случае, если нет космологической постоянной. При отрицательной космологической постоянной возможны более сложные чёрные дыры, скажем, с топологией сферы с ручками, кренделей всевозможных и так далее.
Или же что поверхность горизонта событий может только возрастать…
А.Ч.
При слиянии чёрных дыр.Д.Г.
Да. В любых процессах поверхность горизонта событий возрастает. И это было как бы прообразом термодинамической аналогии, потому что довольно скоро было осознано, что картина чёрной дыры совместна с принципами термодинамики, то есть с тем, что энтропия должна возрастать лишь только в том случае, если, действительно, чёрной дыре нужно приписать энтропию пропорциональную поверхности, площади поверхности горизонта событий. Иначе, если газ падает в чёрную дыру, то поглощается не просто материя, но поглощается и мера хаотичности, то есть энтропия.