Читаем Диалоги о математике полностью

Гиппократ. Пожалуй, мы должны допустить это.

Сократ. Если я скажу, что математики занимаются тем, что или вовсе не существует или существует, но не так, как существуют звезды или рыбы, то буду ли я прав?

Гиппократ. Вполне.

Сократ. Теперь рассмотрим этот вопрос с другой точки зрения. Я написал на восковой табличке число 37. Ты видишь его?

Гиппократ. Да.

Сократ. И можешь дотронуться до него рукой?

Гиппократ. Конечно.

Сократ. Значит, числа существуют?

Гиппократ. Ты смеешься надо мной, Сократ. Послушай! Я нарисовал на такой же табличке дракона с семью головами. Разве это означает, что он существует?

Я никогда не встречал никого, кто видел бы дракона. Я убежден, что драконы существуют только в сказках. Возможно, я ошибаюсь, и драконы действительно есть где-нибудь по ту сторону Геркулесовых столпов, чего не скажешь о том, которого я нарисовал.

Сократ. Ты прав, Гиппократ, я с тобой согласен. Значит, хотя мы говорим о числах и даже можем написать их, на самом деле они не существуют?

Гиппократ. Конечно.

Сократ. Не делай поспешных заключений. Давай решим еще один вопрос. Прав ли я, говоря, что мы можем сосчитать овец на лугах или корабли в гавани?

Гиппократ. Да.

Сократ. И овцы и корабли существуют?

Гиппократ. Несомненно.

Сократ. Но если овцы существуют, их число тоже должно существовать, не так ли?

Гиппократ. Ты смеешься надо мной, Сократ. Математики не считают овец, это дело овцеводов.

Сократ. Ты думаешь, что математики изучают не количество овец, кораблей или других реальных предметов, а числа сами по себе? И, таким образом, они интересуются только тем, что существует у них в сознании?

Гиппократ. Именно так я и думаю.

Сократ. Ты говорил, Театет считает, что математика изучает числа и геометрические формы. А формы? Если я спрошу тебя, существуют ли они, что ты ответишь?

Гиппократ. Существуют. Мы можем видеть, например, прекрасную форму сосуда и ощутить ее руками.

Сократ. Осталась одна неясность. Если ты смотришь на сосуд, что ты видишь — сосуд или его форму?

Гиппократ. И то и другое.

Сократ. То же самое происходит, когда ты смотришь на ягненка. Ведь ты видишь одновременно и ягненка и его шерсть?

Гиппократ. Это очень удачное сравнение.

Сократ. А я думаю, оно хромает, как Гефест. Ты можешь состричь шерсть с ягненка и увидеть ягненка без шерсти и шерсть без ягненка. Можешь ли ты отделить таким же образом форму сосуда от самого сосуда?

Гиппократ. Я полагаю, этого никто не может.

Сократ. И ты все еще уверен, что можно видеть геометрическую форму?

Гиппократ. Теперь я начинаю сомневаться.

Сократ. Кроме того, если математики изучают формы сосудов, значит ли, что их можно назвать гончарами?

Гиппократ. Конечно.

Сократ. Тогда, если Теодор — лучший математик, должен ли он быть также лучшим гончаром? Многие люди восхваляют его, но никто не говорил, что он хоть сколько-нибудь понимает в гончарном деле. Сомневаюсь, сможет ли он сделать даже самый простой горшок. Может быть, математики имеют дело с формами статуй или зданий?

Гиппократ. В таком случае они должны быть скульпторами и архитекторами.

Сократ. Вот, мой друг, мы и пришли к выводу, что математики, изучая геометрию, занимаются не формой реальных предметов, таких, как сосуды, а формами, которые существуют только в их сознании. Ты согласен?

Гиппократ. Я вынужден согласиться.

Сократ. Мы установили, что математики занимаются предметами, которые существуют не в действительности, а только в их мыслях. А теперь обсудим утверждение Театета, о котором ты упомянул раньше, что математика дает более надежные и заслуживающие доверия знания, чем любые другие науки. Скажи, приводил ли Театет какие-либо примеры?

Гиппократ. Да, он сказал, что никто не может знать точное расстояние от Афин до Спарты. Конечно, люди, которые путешествуют, знают, за сколько дней они проходят этот путь, но невозможно знать точное количество шагов на каком-то расстоянии. Однако любой может вычислить по теореме Пифагора длину диагонали квадрата. Театет сказал еще, что нельзя узнать точное число людей, живущих в Элладе. И если бы кто-либо попытался сделать это, то не достиг бы реального результата, потому что во время счета некоторые старые люди умирали бы и рождались бы дети, поэтому результат был бы только приближенным. Но спроси математика, сколько ребер у правильного додекаэдра, и он ответит, что у додекаэдра 12 граней и каждая имеет пять ребер. Получается 60 ребер, но так как каждое ребро принадлежит двум граням одновременно и потому считается дважды, получится 30 ребер, и эта цифра, несомненно, верная.

Сократ. Приводил ли он еще какие-нибудь примеры?

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция человека. Книга II. Обезьяны, нейроны и душа
Эволюция человека. Книга II. Обезьяны, нейроны и душа

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу.Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История Византии
История Византии

Византийская империя. «Второй Рим».Великое государство, колыбель православия, очаг высокой культуры?Тирания, безжалостно управлявшая множеством покоренных народов, давившая в подданных всякий намек на свободомыслие и жажду независимости?Путешественники с восхищением писали о блеске и роскоши «Второго Рима» и с ужасом упоминали о жестокости интриг императорского двора, о многочисленных религиозных и политических распрях, терзавших империю, о феноменально скандальных для Средневековья нравах знатных византийцев…Византийская империя познала и времена богатства и могущества, и дни упадка и разрушения.День, когда Византия перестала существовать, известен точно: 29 мая 1453 года.Так ли это? Что стало причиной падения Византийской империи?Об этом рассказывает в своей уникальной книге сэр Джон Джулиус Норвич.

Джон Джулиус Норвич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Жизненными циклами всего на свете – от растений и животных до городов, в которых мы живем, – управляют универсальные скрытые законы. Об этих законах – законах масштабирования – рассказывает один из самых авторитетных ученых нашего времени, чьи исследования совершили переворот в науке. «Эта книга – об объединенной и объединяющей системе концепций, которая позволила бы подступиться к некоторым из крупнейших задач и вопросов, над которыми мы бьемся сегодня, от стремительной урбанизации, роста населения и глобальной устойчивости до понимания природы рака, обмена веществ и причин старения и смерти. О замечательном сходстве между принципами действия городов, компаний и наших собственных тел и о том, почему все они представляют собой вариации одной общей темы, а их организация, структура и динамика с поразительной систематичностью проявляют сходные черты. Общим для всех них является то, что все они, будь то молекулы, клетки или люди, – чрезвычайно сложные системы, состоящие из огромного числа индивидуальных компонентов, взаимосвязанных, взаимодействующих и развивающихся с использованием сетевых структур, существующих на нескольких разных пространственных и временных масштабах…» Джеффри Уэст

Джеффри Уэст

Деловая литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Финансы и бизнес