Читаем Diaspora полностью

Kozuch had labored for more than twenty years to refine this hypothesis, drawing together tantalizing but partial results from dozens of other specialties, cannibalizing everything from Penrose spin networks to the compactified extra dimensions of string theory. By including six sub-microscopic dimensions along with the usual four of space-time, she had shown how wormholes with different topologies could account for the properties of all the known particles. No one had directly observed a Kozuch-Wheeler wormhole, but after surviving a millennium of experimental tests the model was widely accepted, not as the best tool for most practical calculations, but as the definitive expression of the underlying order of the physical world.

Gabriel had learned Kozuch Theory in the womb, and it had always seemed to him to be the deepest, clearest picture of reality available. The mass of a particle was a consequence of the disruption it caused to a certain class of vacuum wormholes: those with virtual gravitons at both ends. Disturbing the usual pattern of connections between these wormholes made space-time effectively curved, much as a change in the weave of a basket could force the surface to bend by bringing parallel threads together. It also created a few loose threads: other wormholes squeezed out of the vacuum by the "tighter weave" wherever space-time was curved, giving rise to both Hawking radiation from black holes and the even fainter Unruh radiation of ordinary objects.

Charge, color, and flavor arose from similar effects, but with virtual photons, gluons, and W-Z bosons as the mouths of the vacuum wormholes involved, and the six rolled-up dimensions, to which gravitons were impervious, now playing a crucial role. Spin measured the presence of a certain kind of extra-dimensional twist in the wormhole mouth; each half-twist contributed half a unit of spin. Fermions, particles such as electrons with an odd number of half-twists, had wormholes which could themselves become twisted like ribbons; if an electron was rotated 360 degrees, its wormhole would gain or lose a definite twist, with measurable consequences. Bosons, such as photons, had full twists in their wormhole mouths, but a 360-degree rotation left them unchanged because the kinks in their wormholes canceled themselves out. A single boson could be "self-linked," the only opening into a wormhole which looped back on itself, or any number of identical bosons could share a wormhole. Fermions were always joined in even numbers; the simplest case was a particle at one end of the wormhole, with its antiparticle at the other.

Under the extreme space-rime curvature of the early universe, countless vacuum wormholes had been "squeezed from the weave" to take on a more tangible existence. Most had formed particle-antiparticle pairs like electrons and positrons, but more rarely they'd created less symmetric combinations, such as an electron at one end of the wormhole with a three-pronged branching into a triplet of quarks, making up a proton, at the other.

This was the origin of all matter. By sheer chance, the vacuum had shed slightly more electron-proton wormholes than their antimatter equivalent, positrons linked to antiprotons, before expanding and cooling to the point where particle production ceased. Without that tiny random excess, every last electron and proton would have been annihilated by a matching antiparticle, and there would have been nothing in the universe but the microwave background, reverberating through empty space.

Kozuch herself had pointed out in 2059 that if this version of Big Bang cosmology was correct, it meant that every surviving electron was linked to a proton, somewhere. Brand new wormholes with known endpoints could be manufactured at will, simply by creating pairs of electrons and positrons, but existing wormholes already crisscrossed interstellar space. After twenty billion years drifting through an evolving and expanding universe, many particles torn from the vacuum side-by-side would have ended up thousands of light years apart. Chances were, every grain of sand, every drop of water on Earth, contained gateways to each of the hundreds of billions of stars in the galaxy, and some that reached far beyond.

The catch was: nothing in the universe could pass through the wormhole mouth of an elementary particle. All the known particles possessed a single quantum unit of surface area, and the probability of any of them passing through another's wormhole was precisely zero.

This problem was not insurmountable. When an electron and a positron collided, their wormholes were spliced together end-to-end, making the two colliding mouths vanish. In that case two gamma-ray photons were produced, but if the wormholes could be spliced, not electron-end to positron-end but electron-end to electron-end, the energy normally lost as gamma rays would be trapped, and would go into making the new, spliced wormhole wider.

Перейти на страницу:

Похожие книги