Было бы неправильным на основании рассмотренных выше примеров сделать вывод о том, что все распределения, полученные дифференциальной психологией, соответствуют нормальному. Существует много других возможных типов частотных распределений, некоторые из них можно проиллюстрировать на примере реальных данных, полученных при исследовании некоторых качеств. Графики распределения могут отличаться от математической «нормальности», главным образом, асимметричной (скошенной набок) формой и степенью уплощенности.
Кроме этого, отклонения от нормального распределения могут проявляться в некоторой
На рисунке 12 изображены два графика, один из которых более заострен, а другой — более уплощен, чем теоретический нормальный график. В первом из них (график А) наблюдается чрезмерный рост количества случаев в центре с одновременным уменьшением их количества у крайних значений шкалы. Во втором (график В) случаи распределены более равномерно на протяжении длинного отрезка.
Графики распределений, существенно отличающиеся от нормальных и проявляющих одну или несколько характеристик, описанных выше, появляются время от времени при наличии некоторых условий. Знание этих условий необходимо для правильной интерпретации частотных распределений. Главными факторами, которые могут оказать влияние на форму графика распределения, являются: неадекватность выборки, использование неудачных или непригодных средств измерения и некоторые факторы, воздействующие непосредственно на исследуемое качество. Сейчас мы рассмотрим по порядку каждое из этих условий.
Выборка.
Чтобы получить любой заданный тип распределения, достаточно просто специально подобрать испытуемых, соответствующих этому типу. Естественно, такая процедура не будет объективной. Подобная изменчивость может быть результатом действия факторов отбора, на которые исследователь не всегда обращает внимание. Каждый раз, когда график распределения существенно отличается от нормального, встает вопрос об адекватности выборки.Например, скошенность может быть результатом включения в состав единого распределения двух нормально распределенных групп, имеющих выраженные отличия друг от друга по значению. Иллюстрацией такого эффекта может быть рисунок 13. В варианте А даны отдельные графики распределения по двум группам, у одной из которых более низкое среднеарифметическое значение и меньше разброс результатов, чем у другой. В варианте В график имеет скошенный вид, который получился в результате объединения графиков распределения двух групп в общий график распределения.
В. Две соединенные группы
Б. Две соединенные группы
Мультимодный график также получается тогда, когда тестируемая выборка не является случайной по отношению к общей популяции, но состоит из индивидов, отобранных с разных уровней и объединенных в единую группу. Например, группа, состоящая из 5- и 10-летних детей, будет непременно давать бимодальное распределение как по показателям теста на умственные способности, так и по результатам измерения роста, веса и многих других характеристик. Если бы в эту выборку были включены группы детей от 6 до 9 лет, то распределение имело бы вид нормального, колоколообразной формы графика.
Как получаются бимодальные распределения в результате подобного объединения двух сильно различающихся групп, видно на рисунке 14. Легко заметить, что у них мало общих точек. Когда их много, как в случае с близкими возрастными группами, результирующий объединенный график будет нормальным и с одной вершиной.